• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 39
  • Tagged with
  • 257
  • 257
  • 257
  • 257
  • 100
  • 99
  • 95
  • 95
  • 91
  • 90
  • 78
  • 73
  • 57
  • 49
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

CFD analysis in spray combustion using a pressure swirl injector

Saulo Alfredo Gómez Salcedo 17 August 2015 (has links)
The object of this work is to apply CFD simulation in the description of the spray burning. As a case study, a pressure swirl injector, characterized and tested by NIST, has been chosen, which atomize liquid kerosene in an atmosphere of gaseous oxygen. The chamber dimensions allow a complete evaporation, avoiding the impact of drops on the circular wall. Swirl-axisymmetric domain and steady state permit to include combustion, a complex process, without requiring of high computational resources. Continuous phase is treated with an Eulerian reference, while fuel drops are tracked following the Lagrangian formulation. Chemical kinetics is reduced to the concept of mixture fraction. This assumption avoids the solution of too many transport equations for all involved species. In the first simulation, the inlet boundary of the continuous phase is obtained from the numerical solution of a fully developed flow transporting the oxidant gas. Then, four cases are proposed and solved, changing the turbulence intensity and swirl velocity on the inlet boundary, each parameter with two different values. Finally, results for the axial velocity, streamlines, drops trajectories, temperature, distribution and total production of selected species are analyzed and compared with other related studies.
62

Movimentação de malhas computacionais para aplicações tridimensionais em aerodinâmica não estacionária

Marcos Paulo Halal Lombardi 06 July 2015 (has links)
A previsão acurada de fenômenos aerodinâmicos não estacionários tem cada vez mais dependido do emprego de técnicas de Mecânica dos Fluidos Computacional (CFD). A aplicação de tais técnicas em problemas não estacionários depende crucialmente de tecnologias de geração de malha que, usualmente, são processos bastante lentos. Para contornar esta limitação, várias metodologias têm sido desenvolvidas a fim de calcular a dinâmica geométrica do problema físico sem gerar novamente uma malha computacional por completo. Neste sentido, este trabalho apresenta um estudo de técnicas eficientes de geração e movimentação de malhas computacionais para simulação não estacionária em CFD, com aplicações em Aeroelasticidade. Para este propósito, é implementada uma abordagem de movimentação de malhas baseada em Funções de Base Radial (RBF). Nesta metodologia, os deslocamentos dos pontos de malha na superfície da estrutura (móvel) são propagados para os pontos volumétricos (interiores), sem alterar a topologia da malha. Este trabalho conduz uma análise comparativa do emprego de diversos tipos de RBF na movimentação de malhas de níveis de refinamento diferentes, bidimensionais e tridimensionais, no que diz respeito à qualidade da malha deformada resultante. Além disso, aborda estratégias de movimentação e sua influência na qualidade de malha gerada. Como aplicação, é conduzida simulação aerodinâmica computacional com código BREXP3D. Este código utiliza formulação de mecânica dos fluidos não estacionária compressível e não viscosa (equações de Euler), implementada numericamente via método de diferenças finitas, o que exige malhas hexaédricas estruturadas. Este trabalho implementa condições de contorno para simulação de asa tridimensional em malhas monobloco e conduz simulação aerodinâmica estacionária em regime transônico, comparando com resultados experimentais. Problemas de malha e convergência não permitiram executar com sucesso a simulação aerodinâmica computacional não estacionária.
63

Investigação de dispersão no cálculo de arrasto em aplicações aeroespaciais

Maximiliano Alberto Fernandes de Souza 06 August 2015 (has links)
A presente dissertação trata da questão importante sobre dispersão no cálculo do coeficiente de arrasto associado a malhas computacionais em aplicações aeroespaciais. Este tema tem sido amplamente discutido na comunidade de Dinâmica dos Fluidos Computacional (CFD) na última década. Determinar com precisão o valor do coeficiente de arrasto de uma configuração sempre foi um dos maiores problemas em CFD na indústria aeroespacial. Tão importante quanto conhecer a grandeza que se deseja calcular é também conhecer quão preciso somos em determinar essa quantidade. Na indústria aeroespacial, programas computacionais baseados nas equações de Navier-Stokes com média de Reynolds (RANS) e malhas computacionais não estruturadas do tipo hexaédricas e do tipo tetraédricas com camadas de prisma para a camada limite aparecem como uma abordagem eficiente. Neste contexto, o presente trabalho conduz estudos de maneira a identificar e a entender as dispersões no cálculo do coeficiente de arrasto causadas por modificações na topologia da malha computacional, utilizando um único código de CFD. A fim de atingir tal objetivo, a asa ONERA-M6 foi escolhida como caso teste deste estudo por representar uma geometria simples e, assim, tornando mais clara a identificação do problema em questão. Com o objetivo de simplificar ainda mais o problema, as simulações não possuem arrasto induzido, que neste caso significa que o ângulo de ataque é zero para todos os casos. Dois números de Mach foram escolhidos para serem investigados neste estudo, Mach 0,3 e 0,8, por representarem regimes subsônico e transônico, respectivamente. Os estudos consideram um número de Reynolds igual a 3 milhões, que é tipicamente usado na indústria aeroespacial durante os estudos experimentais em túnel de vento. As dispersões no cálculo de arrasto encontradas neste estudo foram discutidas e investigadas com o objetivo de identificar as regiões da asa de maior contribuição da dispersão total e, também, apontar as diferenças na malha superficial e volumétrica que poderiam contribuir para tais dispersões. Baseado nos resultados obtidos neste trabalho, foi possível identificar a precisão no cálculo do coeficiente de arrasto de uma configuração simplificada, devido às modificações na topologia da malha que podem ser associadas a variações geométricas em um estudo de otimização aerodinâmica.
64

Simulação numérica de motores de combustão interna : um estudo sobre injeção direta de etanol

Fernanda Pinheiro Martins 18 December 2012 (has links)
Este trabalho aborda a utilização de uma geometria representativa de um motor mono cilíndrico, com injeção direta de etanol hidratado e ignição assistida por centelha. A partir da utilização de um código comercial de Dinâmica dos Fluidos Computacional, a malha móvel é criada e as equações governantes são resolvidas. O escopo do trabalho inclui a caracterização do escoamento de ar durante a compressão e a formação de mistura estratificada. É analisado o efeito da geometria da câmara na formação da mesma e sua distribuição ao longo da câmara de combustão. É analisada a influência de parâmetros como: pressão do combustível injetado, início da injeção e massa de combustível injetada. O objetivo final é a obtenção da concentração de combustível ao longo do cilindro, durante o desenvolvimento do jato e o movimento do pistão, além da formação de filme nas paredes da câmara. Tais resultados são de extrema importância para a avaliação de estratégias de injeção que tornem possível a partida a frio de veículos em baixas temperaturas sem a aplicação de sistemas auxiliares. Os resultados, como já eram previstos, mostraram que a pressão e o início da injeção de combustível são parâmetros que influenciam diretamente a evaporação de combustível, assim como a quantidade de filme formado, principalmente no pistão.
65

Simulação de um reator de combustão e gaseificação através de uma rede de reatores equivalentes baseada em fluidodinâmica computacional

Rocha, Melissa Rodrigues de la January 2016 (has links)
No presente trabalho são empregadas ferramentas de fluidodinâmica computacional (CFD) como base à criação de uma rede de reatores equivalente para o estudo de um reator de leito fluidizado borbulhante em escala piloto pertencente à CIENTEC-RS, empregado para a gaseificação de carvão das minas de Candiota-RS. Inicialmente, foram conduzidas simulações fluidodinâmicas em meio reacional gasoso (utilizando metano e ar) para análise do comportamento do escoamento no gaseificador. A partir de medições do equipamento real e dados de projeto do mesmo foi implementada no software CFX 13.0 a geometria do reator e foram realizados testes de convergência de malhas computacionais, de forma a escolher a mais apropriada para a realização das simulações em CFD. A avaliação de parâmetros como perfis de velocidade e concentrações ao longo do reator serviram para a escolha das malhas para a continuidade do estudo. Diferentes variações na geometria foram propostas, de modo a simplificá-la, reduzindo o custo computacional das simulações, porém mantendo a qualidade dos resultados. Foram, ainda, avaliados os padrões de escoamento típicos do reator, operando em fase gasosa e na presença de um leito fluidizado. De posse dos padrões de escoamentos obtidos foi proposta uma rede de reatores equivalentes – ERN (equivalent reactor network) a fim de modelar o reator da CIENTEC, empregando um modelo cinético detalhado para determinação das taxas de reação na fase gasosa. Para fins de avaliação da metodologia, conduziram-se simulações envolvendo a combustão de metano, analogamente ao estudo em CFD, e envolvendo o processo de gaseificação de carvão, com as características do obtido nas minas de Candiota. O objetivo do estudo foi avaliar os pontos cruciais no desenvolvimento de um modelo ERN e prever as características dos produtos obtidos para diferentes condições operacionais. Espera-se que este modelo seja aprimorado e usado para o melhoramento e otimização do processo, com o propósito de obter um gás de potencial energético e com características adequadas à utilização como insumo para processos carboquímicos. / In this dissertation, computational fluid dynamics (CFD) simulations were applied to develop equivalent reactor networks (ERN) for the study of a bubbling fluidized bed reactor from CIENTEC-RS, used for coal gasification. Initially, the computational geometry of the gasifier was created using the software CFX 13.0, based on field measurements and design data. Mesh convergence tests were carried out in order to choose the most appropriate for obtaining accurate solutions, using gas-phase reactions. Different variations in geometry were proposed in order to reduce the computational cost of the simulations, while maintaining the quality of the results. The simulations also evaluated the typical flow patterns of the reactor operating in the gaseous phase and in the presence of a fluidized bed. The flow patterns were used as a basis for proposing equivalent reactor networks for the CIENTEC reactor, using a detailed kinetic model to determine the reaction rates in the gas phase. For methodology evaluation purposes, simulations involving the combustion of methane were conducted, similar to the study in CFD, as well as the coal gasification process. The aim of the study was to evaluate the crucial points in the development of an ERN model and to predict the characteristics of the gaseous product streams obtained for different operating conditions. It is expected that this model can be used for the improvement and optimization of the gasification process, in order to obtain a gas with energetic potential and suitable for using it as a feedstock for carbochemical processes.
66

Metodologia de micrositing para terrenos complexos baseada em CFD com softwares livres de código aberto

Radünz, William Corrêa January 2018 (has links)
Micrositing é o campo do posicionamento estratégico dos aerogeradores na área do parque eólico visando a con guração mais promissora em termos econômicos ou de produção. Dado que em terrenos complexos as características do vento variam na área do parque eólico de forma não-linear, emprega-se a modelagem numérica do vento por CFD para extrapolar os dados medidos para toda a região. O presente trabalho consiste no desenvolvimento de uma metodologia de micrositing em terrenos complexos capaz de auxiliar no projeto do layout e seleção do tipo e altura de eixo do aerogerador que maximiza o fator de capacidade (FC) utilizando softwares livres de código aberto. A metodologia consiste na simulação do vento para várias direções de incidência, assimilação das medições, convers ão de velocidade em densidade de potência, ponderação por frequência de ocorrência de cada direção, sobreposição, seleção das coordenadas dos aerogeradores e cálculo do FC para diversas con gurações de tipo e altura de eixo dos aerogeradores. Veri cação, validação e seleção das constantes do modelo de turbulência é realizada anteriormente às simulações Veri cou-se que o modelo k- produziu um escoamento horizontalmente homog êneo e que o melhor desempenho na validação foi obtido com a escolha de constantes para escoamentos atmosféricos. A metodologia foi demonstrada em uma região de terreno complexo em que o FC do parque eólico proposto apresentou caráter convergente com o re no progressivo da malha, porém oscilatório em termos do número de direções simuladas. Por m, obteve-se FC brutos superiores a 40% para as cinco melhores con gurações e de aproximadamente 52% no melhor caso, indicando bom potencial eólico. A metodologia foi capaz de preencher uma lacuna na literatura cientí ca de micrositing ao possibilitar o planejamento do layout, tipo de aerogerador e altura de eixo, bem como a estimativa da produção e FC brutos da usina em terrenos complexos. Além disso, a estrutura de trabalho com o uso de recursos computacionais livres e de código aberto reforça o caráter de desenvolvimento contínuo, compartilhamento e transparência da metodologia. / Micrositing is the eld concerned with the strategic positioning of wind turbines in the wind farm area aimed at the most promissing con guration economically- or yield-wise. Given the wind characteristics vary non-linearly across the wind farm area in complex terrain, numerical wind modeling with CFD is employed to extrapolate the measured data to the whole site. The present work consists of the development of a micrositing methodology in complex terrain capable of assisting the layout project and selection of wind turbine type and hub height that maximizes the capacity factor (CF) using free and open-source software. The methodology consists of simulating the wind for a number of incoming directions, assimilation of measurements, conversion of wind speed into power density, weighing by frequency of occurrence of each direction, overlapping, selection of wind turbine coordinates and CF calculation for a number of wind turbine types and hub heights. Veri cation, validation and selection of turbulence model constants is performed previous to the simulations It was veri ed that the k- model is able to sustain horizontally-homogeneous ow and that the classic atmospheric ow constants performed best in the validation step. The methodology was demonstrated in a complex terrain region for which the proposed wind farm CF showed converging behavior with progressive mesh re nement, however oscillating with the number of wind directions simulated. Ultimately, CF greater than 40% were obtained with the ve best performing con gurations and approximately 52% in the best case scenario, suggesting good wind potential. The methodology was capable of lling a major gap in the scienti c literature of micrositing for allowing the layout planning, selection of wind turbine type and hub height, as well as gross production estimates and CF for the wind farm in complex terrain. Additionally, the free and open-source-based framework strengthens the continuous development, sharing and transparency of the methodology.
67

Modelagem de cavitação bifásica em um rotor de bomba centrífuga

Cunha, Marco Antonio Rodrigues January 2013 (has links)
Orientador: Helcio Francisco Villa Nova / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Engenharia Mecânica, 2013
68

O papel de modelos de turbulência na modelagem de um biorreator com membranas

Ávila, Vinícius da Costa January 2017 (has links)
O mercado de biorreatores com membranas (BRMs) têm exibido alto crescimento. Contudo, o fouling diminui o desempenho desses sistemas drasticamente. A aeração promove a mitigação do fouling, mas possui alto custo operacional (de até 70% do total da demanda energética) e é utilizada de forma otimizada apenas 10% das vezes, gerando a necessidade de estudos sobre a hidrodinâmica em BRMs. Ferramentas de dinâmica de fluidos computacional (CFD) são úteis para esse tipo de análise. Um dos primeiros passos para encontrar uma solução apropriada em simulações numéricas é propor uma modelagem correta. Dentre os fenômenos a serem modelados, os efeitos da turbulência são provavelmente um dos mais importantes; porém, nenhum artigo que comparasse predições com base na escolha de modelo de turbulência para simulações de sistemas BRM foi encontrado. Dessa forma, o objetivo desse trabalho foi verificar a importância da escolha do modelo de turbulência para simulações de biorreatores com membranas através de CFD. Para isso, as predições obtidas de velocidade local próxima às superfícies das membranas e de tensão cisalhante nessas superfícies para duas taxas de aeração, 5 e 15 m³/h, empregando dois modelos de turbulência, k-ϵ com funções de parede para alto (aR) e para baixo número de Reynolds (bR) e k-ω SST (Shear Stress Transport) com funções de parede automáticas, na análise de um sistema BRM foram comparadas entre si e com dados experimentais e simulados disponíveis na literatura. Os perfis temporais da velocidade e da tensão cisalhante exibiram alta variabilidade no período das oscilações em certos pontos, exigindo um longo tempo de escoamento para a convergência das variáveis locais. Identificou-se a necessidade de outorgar maior importância à definição do intervalo de tempo de coleta de dados experimentais, de modo a adquirir médias representativas do perfil dinâmico das variáveis e destes perfis serem também analisados para comparações mais definitivas entre resultados de simulações e medições experimentais. As diferenças, entre as medições experimentais da literatura e predições, obtidas pelas simulações deste trabalho foram, no geral, de ordem similar ou menores que as obtidas pelas simulações na literatura. Além disso, maior atenção deve ser dada à escolha da estratégia de modelagem de turbulência, visto que houve alta sensibilidade das predições, que variaram em até 21,6% dependendo dessa escolha. / Membrane bioreactors (MBR) market has been showing high growth rates over recent years. However, membrane fouling drastically reduces MBR overall performance. Aeration promotes fouling mitigation, but at a high operational cost (up to 70% of the MBR energy demand) and it is optimally employed only in 10% of the cases. This created the need of studies focused on MBR hydrodynamic. Computational fluid dynamics (CFD) is a useful tool for hydrodynamic analysis. One of the first steps in finding a proper solution for numerical simulation is proposing a correct modelling. Among the phenomena to be modelled for MBR simulations, turbulence effects are probably one of the most important; nevertheless, no paper comparing the predictions based on the turbulence model choice for MBR simulations was found. In sight of that, this work aimed to verify the relevance of the choice of turbulence model for MBR simulations through CFD. Predictions of local velocities near membranes surfaces and of local shear stress on those surfaces, for two aeration rates (5 and 15 m³/h), employing k-ϵ with wall functions for high (aR) and low (bR) Reynolds number and k-ω SST with automatic wall functions, on the analysis of a MRB system, were compared between each other and with experimental and simulated data available in the literature. The velocity and shear stress temporal profiles showed oscillations with highly variable periods in some points, which required a long process real time to verify the local variables convergence. It was identified the need to give more importance to the definition of the time interval for experimental data collection in order to acquire reliable temporal means; also, one must properly analyze the temporal profiles for more definitive comparisons between predictions and experimental measurements. The differences, between experimental data and predictions, obtained through this work simulations were, in general, of similar order or smaller than the ones reported in the literature. Besides, more attention must be given to the turbulence modelling choices, since the predictions obtained here were highly sensitive to those choices, showing differences up to 21,6% among them.
69

The NETmix® Reactor : strategies for optimizing mixing and development of new reactor designs

Gomes, Paulo Jorge da Cunha January 2011 (has links)
Tese de doutoramento. Engenharia Química e Biológica. Faculdade de Engenharia. Universidade do Porto. 2011
70

O papel de modelos de turbulência na modelagem de um biorreator com membranas

Ávila, Vinícius da Costa January 2017 (has links)
O mercado de biorreatores com membranas (BRMs) têm exibido alto crescimento. Contudo, o fouling diminui o desempenho desses sistemas drasticamente. A aeração promove a mitigação do fouling, mas possui alto custo operacional (de até 70% do total da demanda energética) e é utilizada de forma otimizada apenas 10% das vezes, gerando a necessidade de estudos sobre a hidrodinâmica em BRMs. Ferramentas de dinâmica de fluidos computacional (CFD) são úteis para esse tipo de análise. Um dos primeiros passos para encontrar uma solução apropriada em simulações numéricas é propor uma modelagem correta. Dentre os fenômenos a serem modelados, os efeitos da turbulência são provavelmente um dos mais importantes; porém, nenhum artigo que comparasse predições com base na escolha de modelo de turbulência para simulações de sistemas BRM foi encontrado. Dessa forma, o objetivo desse trabalho foi verificar a importância da escolha do modelo de turbulência para simulações de biorreatores com membranas através de CFD. Para isso, as predições obtidas de velocidade local próxima às superfícies das membranas e de tensão cisalhante nessas superfícies para duas taxas de aeração, 5 e 15 m³/h, empregando dois modelos de turbulência, k-ϵ com funções de parede para alto (aR) e para baixo número de Reynolds (bR) e k-ω SST (Shear Stress Transport) com funções de parede automáticas, na análise de um sistema BRM foram comparadas entre si e com dados experimentais e simulados disponíveis na literatura. Os perfis temporais da velocidade e da tensão cisalhante exibiram alta variabilidade no período das oscilações em certos pontos, exigindo um longo tempo de escoamento para a convergência das variáveis locais. Identificou-se a necessidade de outorgar maior importância à definição do intervalo de tempo de coleta de dados experimentais, de modo a adquirir médias representativas do perfil dinâmico das variáveis e destes perfis serem também analisados para comparações mais definitivas entre resultados de simulações e medições experimentais. As diferenças, entre as medições experimentais da literatura e predições, obtidas pelas simulações deste trabalho foram, no geral, de ordem similar ou menores que as obtidas pelas simulações na literatura. Além disso, maior atenção deve ser dada à escolha da estratégia de modelagem de turbulência, visto que houve alta sensibilidade das predições, que variaram em até 21,6% dependendo dessa escolha. / Membrane bioreactors (MBR) market has been showing high growth rates over recent years. However, membrane fouling drastically reduces MBR overall performance. Aeration promotes fouling mitigation, but at a high operational cost (up to 70% of the MBR energy demand) and it is optimally employed only in 10% of the cases. This created the need of studies focused on MBR hydrodynamic. Computational fluid dynamics (CFD) is a useful tool for hydrodynamic analysis. One of the first steps in finding a proper solution for numerical simulation is proposing a correct modelling. Among the phenomena to be modelled for MBR simulations, turbulence effects are probably one of the most important; nevertheless, no paper comparing the predictions based on the turbulence model choice for MBR simulations was found. In sight of that, this work aimed to verify the relevance of the choice of turbulence model for MBR simulations through CFD. Predictions of local velocities near membranes surfaces and of local shear stress on those surfaces, for two aeration rates (5 and 15 m³/h), employing k-ϵ with wall functions for high (aR) and low (bR) Reynolds number and k-ω SST with automatic wall functions, on the analysis of a MRB system, were compared between each other and with experimental and simulated data available in the literature. The velocity and shear stress temporal profiles showed oscillations with highly variable periods in some points, which required a long process real time to verify the local variables convergence. It was identified the need to give more importance to the definition of the time interval for experimental data collection in order to acquire reliable temporal means; also, one must properly analyze the temporal profiles for more definitive comparisons between predictions and experimental measurements. The differences, between experimental data and predictions, obtained through this work simulations were, in general, of similar order or smaller than the ones reported in the literature. Besides, more attention must be given to the turbulence modelling choices, since the predictions obtained here were highly sensitive to those choices, showing differences up to 21,6% among them.

Page generated in 0.1562 seconds