• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed optimization under partial information using direct interaction: a methodology and applications

Kim, Sun Woo 25 April 2007 (has links)
This research proposes a methodology to solve distributed optimization problems where quasi-autonomous decision entities directly interact with each other for partial information sharing. In the distributed system we study the quasi-autonomy arising from the assumption that each decision entity has complete and unique responsibility for a subset of decision variables. However, when solving a decision problem locally, consideration is given to how the local decisions affect overall system performance such that close-to-optimal solutions are obtained among all participating decision entities. Partial information sharing refers to the fact that no entity has the complete information access needed to solve the optimization problem globally. This condition hinders the direct application of traditional optimization solution methods. In this research, it is further assumed that direct interaction among the decision entities is allowed. This compensates for the lack of complete information access with the interactive exchange of non-private information. The methodology is tested in different application contexts: manufacturing capacity allocation, single machine scheduling, and jobshop scheduling. The experimental results show that the proposed method generates close-to optimal solutions in the tested problem settings.
2

Direct interaction with large displays through monocular computer vision

Cheng, Kelvin January 2009 (has links)
Doctor of Philosophy (PhD) / Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized. A proof-of-concept prototype is built and evaluated from various user studies. Results from this thesis suggested that it is possible to allow natural user interaction with large displays using low-cost monocular computer vision. Furthermore, models developed and lessons learnt in this research can assist designers to develop more accurate and natural interactive systems that make use of human’s natural pointing behaviours.
3

Direct interaction with large displays through monocular computer vision

Cheng, Kelvin January 2009 (has links)
Doctor of Philosophy (PhD) / Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized. A proof-of-concept prototype is built and evaluated from various user studies. Results from this thesis suggested that it is possible to allow natural user interaction with large displays using low-cost monocular computer vision. Furthermore, models developed and lessons learnt in this research can assist designers to develop more accurate and natural interactive systems that make use of human’s natural pointing behaviours.
4

Live shopping as a tool to create an engaging customer experience

Ekelöw, Arvid, Lundberg, Vendela January 2022 (has links)
The purpose of this study is to explore how firms create an engaging customer experience through live shopping. More specifically, by performing a case study this thesis will provide an example of how firms use live shopping to create interactions, as well as to provide value through firm offerings.  This thesis performs qualitative exploratory research with an abductive research approach by studying the case company, Flowlife. Both primary- and secondary data sources are conducted. The primary data is collected through semi-structured interviews with seven employees at the selected company and further analyzed through thematic analysis. While secondary data is conducted through observations of two recorded live shopping event and KPIs provided from the company.  The empirical findings highlight that live shopping allows the studied firm to get close to their customers. Moreover, it was stated that the firm recognizes live shopping as a powerful tool to share information to customers; both about their products, but also about “added value” beyond what is embedded in their products. Finally, it can be identified that the firm perceive a control over the interactions that live shopping brings.  The presented study identifies that live shopping allows a firm to reach beyond the ordinary online experience by combining elements from brick-and-mortar stores with digital affordances. This way, a firm can increase the probability of building trust and relationships. Moreover, live shopping is agile in its nature and allows a firm to adjust and customize firm offerings while providing it. It can also be stated that live shopping allows a firm to provide greater value-in-use and elevate a firm’s role in the value creation process by expanding its role in the joint sphere.

Page generated in 0.1213 seconds