• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Advances in aircraft design: multiobjective optimization and a markup language

Deshpande, Shubhangi Govind 23 January 2014 (has links)
Today's modern aerospace systems exhibit strong interdisciplinary coupling and require a multidisciplinary, collaborative approach. Analysis methods that were once considered feasible only for advanced and detailed design are now available and even practical at the conceptual design stage. This changing philosophy for conducting conceptual design poses additional challenges beyond those encountered in a low fidelity design of aircraft. This thesis takes some steps towards bridging the gaps in existing technologies and advancing the state-of-the-art in aircraft design. The first part of the thesis proposes a new Pareto front approximation method for multiobjective optimization problems. The method employs a hybrid optimization approach using two derivative free direct search techniques, and is intended for solving blackbox simulation based multiobjective optimization problems with possibly nonsmooth functions where the analytical form of the objectives is not known and/or the evaluation of the objective function(s) is very expensive (very common in multidisciplinary design optimization). A new adaptive weighting scheme is proposed to convert a multiobjective optimization problem to a single objective optimization problem. Results show that the method achieves an arbitrarily close approximation to the Pareto front with a good collection of well-distributed nondominated points. The second part deals with the interdisciplinary data communication issues involved in a collaborative mutidisciplinary aircraft design environment. Efficient transfer, sharing, and manipulation of design and analysis data in a collaborative environment demands a formal structured representation of data. XML, a W3C recommendation, is one such standard concomitant with a number of powerful capabilities that alleviate interoperability issues. A compact, generic, and comprehensive XML schema for an aircraft design markup language (ADML) is proposed here to provide a common language for data communication, and to improve efficiency and productivity within a multidisciplinary, collaborative environment. An important feature of the proposed schema is the very expressive and efficient low level schemata. As a proof of concept the schema is used to encode an entire Convair B58. As the complexity of models and number of disciplines increases, the reduction in effort to exchange data models and analysis results in ADML also increases. / Ph. D.
12

Some Population Set-Based Methods for Unconstrained Global Optimization

Kaelo, Professor 16 November 2006 (has links)
Student Number : 0214677F - PhD thesis - School of Camputational and Applied Mathematics - Faculty of Science / Many real-life problems are formulated as global optimization problems with continuous variables. These problems are in most cases nonsmooth, nonconvex and often simulation based, making gradient based methods impossible to be used to solve them. Therefore, ef#2;cient, reliable and derivative-free global optimization methods for solving such problems are needed. In this thesis, we focus on improving the ef#2;ciency and reliability of some global optimization methods. In particular, we concentrate on improving some population set-based methods for unconstrained global optimization, mainly through hybridization. Hybridization has widely been recognized to be one of the most attractive areas of unconstrained global optimization. Experiments have shown that through hybridization, new methods that inherit the strength of the original elements but not their weakness can be formed. We suggest a number of new hybridized population set-based methods based on differential evolution (de), controlled random search (crs2) and real coded genetic algorithm (ga). We propose #2;ve new versions of de. In the #2;rst version, we introduce a localization, called random localization, in the mutation phase of de. In the second version, we propose a localization in the acceptance phase of de. In the third version, we form a de hybrid algorithm by probabilistically combining the point generation scheme of crs2 with that of de in the de algorithm. The fourth and #2;fth versions are also de hybrids. These versions hybridize the mutation of de with the point generation rule of the electromagnetism-like (em) algorithm. We also propose #2;ve new versions of crs2. The #2;rst version modi#2;es the point generation scheme of crs2 by introducing a local mutation technique. In the second and third modi#2;cations, we probabilistically combine the point generation scheme of crs2 with the linear interpolation scheme of a trust-region based method. The fourth version is a crs hybrid that probabilistically combines the quadratic interpolation scheme with the linear interpolation scheme in crs2. In the #2;fth version, we form a crs2 hybrid algorithm by probabilistically combining the point generation scheme of crs2 with that of de in the crs2 algorithm. Finally, we propose #2;ve new versions of the real coded genetic algorithm (ga) with arithmetic crossover. In the #2;rst version of ga, we introduce a local technique. We propose, in the second version, an integrated crossover rule that generates two children at a time using two different crossover rules. We introduce a local technique in the second version to obtain the third version. The fourth and #2;fth versions are based on the probabilistic adaptation of crossover rules. The ef#2;ciency and reliability of the new methods are evaluated through numerical experiments using a large test suite of both simple and dif#2;cult problems from the literature. Results indicate that the new hybrids are much better than their original counterparts both in reliability and ef#2;ciency. Therefore, the new hybrids proposed in this study offer an alternative to many currently available stochastic algorithms for solving global optimization problems in which the gradient information is not readily available.
13

Nonparametric estimation of the mixing distribution in mixed models with random intercepts and slopes

Saab, Rabih 24 April 2013 (has links)
Generalized linear mixture models (GLMM) are widely used in statistical applications to model count and binary data. We consider the problem of nonparametric likelihood estimation of mixing distributions in GLMM's with multiple random effects. The log-likelihood to be maximized has the general form l(G)=Σi log∫f(yi,γ) dG(γ) where f(.,γ) is a parametric family of component densities, yi is the ith observed response dependent variable, and G is a mixing distribution function of the random effects vector γ defined on Ω. The literature presents many algorithms for maximum likelihood estimation (MLE) of G in the univariate random effect case such as the EM algorithm (Laird, 1978), the intra-simplex direction method, ISDM (Lesperance and Kalbfleish, 1992), and vertex exchange method, VEM (Bohning, 1985). In this dissertation, the constrained Newton method (CNM) in Wang (2007), which fits GLMM's with random intercepts only, is extended to fit clustered datasets with multiple random effects. Owing to the general equivalence theorem from the geometry of mixture likelihoods (see Lindsay, 1995), many NPMLE algorithms including CNM and ISDM maximize the directional derivative of the log-likelihood to add potential support points to the mixing distribution G. Our method, Direct Search Directional Derivative (DSDD), uses a directional search method to find local maxima of the multi-dimensional directional derivative function. The DSDD's performance is investigated in GLMM where f is a Bernoulli or Poisson distribution function. The algorithm is also extended to cover GLMM's with zero-inflated data. Goodness-of-fit (GOF) and selection methods for mixed models have been developed in the literature, however their application in models with nonparametric random effects distributions is vague and ad-hoc. Some popular measures such as the Deviance Information Criteria (DIC), conditional Akaike Information Criteria (cAIC) and R2 statistics are potentially useful in this context. Additionally, some cross-validation goodness-of-fit methods popular in Bayesian applications, such as the conditional predictive ordinate (CPO) and numerical posterior predictive checks, can be applied with some minor modifications to suit the non-Bayesian approach. / Graduate / 0463 / rabihsaab@gmail.com
14

Nonparametric estimation of the mixing distribution in mixed models with random intercepts and slopes

Saab, Rabih 24 April 2013 (has links)
Generalized linear mixture models (GLMM) are widely used in statistical applications to model count and binary data. We consider the problem of nonparametric likelihood estimation of mixing distributions in GLMM's with multiple random effects. The log-likelihood to be maximized has the general form l(G)=Σi log∫f(yi,γ) dG(γ) where f(.,γ) is a parametric family of component densities, yi is the ith observed response dependent variable, and G is a mixing distribution function of the random effects vector γ defined on Ω. The literature presents many algorithms for maximum likelihood estimation (MLE) of G in the univariate random effect case such as the EM algorithm (Laird, 1978), the intra-simplex direction method, ISDM (Lesperance and Kalbfleish, 1992), and vertex exchange method, VEM (Bohning, 1985). In this dissertation, the constrained Newton method (CNM) in Wang (2007), which fits GLMM's with random intercepts only, is extended to fit clustered datasets with multiple random effects. Owing to the general equivalence theorem from the geometry of mixture likelihoods (see Lindsay, 1995), many NPMLE algorithms including CNM and ISDM maximize the directional derivative of the log-likelihood to add potential support points to the mixing distribution G. Our method, Direct Search Directional Derivative (DSDD), uses a directional search method to find local maxima of the multi-dimensional directional derivative function. The DSDD's performance is investigated in GLMM where f is a Bernoulli or Poisson distribution function. The algorithm is also extended to cover GLMM's with zero-inflated data. Goodness-of-fit (GOF) and selection methods for mixed models have been developed in the literature, however their application in models with nonparametric random effects distributions is vague and ad-hoc. Some popular measures such as the Deviance Information Criteria (DIC), conditional Akaike Information Criteria (cAIC) and R2 statistics are potentially useful in this context. Additionally, some cross-validation goodness-of-fit methods popular in Bayesian applications, such as the conditional predictive ordinate (CPO) and numerical posterior predictive checks, can be applied with some minor modifications to suit the non-Bayesian approach. / Graduate / 0463 / rabihsaab@gmail.com
15

Optimisation of Active Microstrip Patch Antennas

Jacmenovic, Dennis, dennis_jacman@yahoo.com.au January 2004 (has links)
This thesis presents a study of impedance optimisation of active microstrip patch antennas to multiple frequency points. A single layered aperture coupled microstrip patch antenna has been optimised to match the source reflection coefficient of a transistor in designing an active antenna. The active aperture coupled microstrip patch antenna was optimised to satisfy Global Positioning System (GPS) frequency specifications. A rudimentary aperture coupled microstrip patch antenna consists of a rectangular antenna element etched on the top surface of two dielectric substrates. The substrates are separated by a ground plane and a microstrip feed is etched on the bottom surface. A rectangular aperture in the ground plane provides coupling between the feed and the antenna element. This type of antenna, which conveniently isolates any circuit at the feed from the antenna element, is suitable for integrated circuit design and is simple to fabricate. An active antenna design directly couples an antenna to an active device, therefore saving real estate and power. This thesis focuses on designing an aperture coupled patch antenna directly coupled to a low noise amplifier as part of the front end of a GPS receiver. In this work an in-house software package, dubbed ACP by its creator Dr Rod Waterhouse, for calculating aperture coupled microstrip patch antenna performance parameters was linked to HP-EEsof, a microwave computer aided design and simulation package by Hewlett-Packard. An ANSI C module in HP-EEsof was written to bind the two packages. This process affords the client the benefit of powerful analysis tools offered in HP-EEsof and the fast analysis of ACP for seamless system design. Moreover, the optimisation algorithms in HP-EEsof were employed to investigate which algorithms are best suited for optimising patch antennas. The active antenna design presented in this study evades an input matching network, which is accomplished by designing the antenna to represent the desired source termination of a transistor. It has been demonstrated that a dual-band microstrip patch antenna can be successfully designed to match the source reflection coefficient, avoiding the need to insert a matching network. Maximum power transfer in electrical circuits is accomplished by matching the impedance between entities, which is generally acheived with the use of a matching network. Passive matching networks employed in amplifier design generally consist of discrete components up to the low GHz frequency range or distributed elements at greater frequencies. The source termination for a low noise amplifier will greatly influence its noise, gain and linearity which is controlled by designing a suitable input matching network. Ten diverse search methods offered in HP-EEsof were used to optimise an active aperture coupled microstrip patch antenna. This study has shown that the algorithms based on the randomised search techniques and the Genetic algorithm provide the most robust performance. The optimisation results were used to design an active dual-band antenna.

Page generated in 0.0437 seconds