• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la discrétisation des déterminants des opérateurs de Schrödinger

CHAUMARD, Laurent 17 December 2003 (has links) (PDF)
Sur une variété compacte $(\cal M)$, à tout opérateur de Schrödinger $A = \Delta_g+V$ défini sur l'espace des fonctions sur $(\cal M)$, il est possible, via un procédé que l'on appelle $\zeta-$régularisation, de définir un déterminant de $A$, que nous notons $(\rm det)_\zeta A$. Nous donnons ici principalement deux résultats : le premier prouve que, à chaque tore riemannien $((\cal M),g)$ de dimension $2$, il est possible d'associer une suite $(G_n, \rho_n , \Delta_n)$, où $G_n$ est un graphe fini, qui se plonge dans $(\cal M)$ via $\rho_n$ de telle manière que $\rho_n(G_n)$ soit une triangulation de $(\cal M)$, et où $\Delta_n$ est un laplacien discret sur $G_n$ tel que pour tout potentiel $V$ sur $(\cal M)$, la suite de réels $\big( \det \Delta_n +V \big)_(n \in (\Bbb N))$ converge, après renormalisation, vers $(\rm det)_\zeta \big( \Delta_g+V \big)$. Le deuxième donne, sur toute variété riemannienne compacte $((\cal M) , g)$ de dimension inférieure ou égale à $3$, et sur laquelle le groupe d'isométrie de $g$ agit de manière transitive, un majorant (en précisant le cas d'égalité) du déterminant $(\rm det)_\zeta \big( \Delta_g + V \big)$, lorsque le potentiel $V$ est positif, qui dépend de $g$ et de la moyenne de $V$.

Page generated in 0.1209 seconds