1 |
Projeto de painéis compósitos reforçados utilizando os métodos de otimização paramétrica e topológica. / Reinforced composite panels design using the parametric and topology optimization methods.Silva, Felipe Langellotti 19 March 2015 (has links)
O crescimento do emprego de materiais compósitos e a flexibilização dos processos de manufatura permitem a adoção deste tipo de material em diversos casos que antes não eram explorados. Este trabalho investiga técnicas de otimização aplicáveis a painéis compósitos laminados e com reforçadores co-curados. Painéis reforçados são amplamente utilizados na indústria aeronáutica por conferirem resistência a carregamentos no plano e de flexão à elementos de baixo peso estrutural que são empregados em estruturas aeronáuticas típicas, como fuselagens. Por meio da otimização paramétrica que adota como variáveis de projeto parâmetros pré-definidos da estrutura, a geometria e posicionamento dos reforçadores, bem como a orientação das lâminas dos painéis e reforçadores compósitos são otimizadas. O problema de otimização é formulado como a maximização da carga de flambagem do painel, calculada através de um programa de Elementos Finitos comercial (Abaqus), sujeito a restrições de massa, máxima deformação admissível e ordem de empilhamento das camadas dentro do laminado. O método de Otimização Discreta de Material (ODM) é utilizado para parametrizar as variáveis de orientação do laminado, de modo a tentar reduzir a ocorrência de mínimos locais dentre as soluções encontradas pelo otimizador, o algoritmo Método das Assíntotas Móveis. Esta metodologia de implementação do problema de otimização é comparada com técnicas baseadas em Algoritmo Genético e variáveis contínuas de orientação das fibras. Os resultados obtidos por meio da metodologia proposta são comparados com aqueles de um painel reforçado representativo com geometria e sequência de empilhamento típicos e por fim, são apresentadas as vantagens e desvantagens entre as metodologias. Em seguida, a utilização de otimização topológica para o projeto de estruturas compósitas é explorada, considerando como função objetivo a maximização da rigidez do painel, sujeita a restrições de volume e de tensão. Neste tipo de otimização, não presume-se a existência de uma distribuição de material fixa na estrutura, com material podendo ser inserido ou retirado de dentro do domínio. O desenvolvimento de técnicas de manufatura com a deposição automática de fibras pré-impregnadas com matriz torna possível este tipo de projeto. Neste caso, para a modelagem do material compósito um elemento finito de casca de 8 nós é implementado e associado à técnica de ODM, de modo a otimizar a distribuição de material no domínio, juntamente com o empilhamento das camadas do laminado nas regiões que contém material. Este método é aplicado em diversos casos exemplos, com formulações de otimização e condições de carregamento diferentes. Ao final, um painel típico aeronáutico é conceitualmente projetado e os resultados são discutidos e comparados com uma configuração típica. / The increased use of composite materials and flexible manufacturing processes allows the application of this type of material in many cases not generally explored. This work investigates optimization techniques applied to composite panels with co-cured stiffeners. Reinforced panels are widely used in the aircraft industry to confer resistance under in-plane and bending loads for lightweight structural elements that are employed in typical aircraft structures such as fuselages. Through parametric optimization which considers as design variables pre-defined structure parameters, stringers geometric dimensions, their positioning, and also the stacking sequence of laminated composite material employed for the panel and stringers layups are optimized. The optimization problem is formulated as the maximization of the panel buckling load obtained through commercial Finite Element software (Abaqus), subjected to constraints such as mass, maximum allowable strains, and stacking order of the laminate. The Discrete Material Optimization (DMO) method is used to parameterize the laminate orientation variables in order to try reduce the occurrence of local minima in the solution found by the optimizer, the Method of Moving Assimptotes (MMA) algorithm. This implementation of the optimization problem is compared with Genetic Algorithm and continuous fiber orientation variables methodologies. The results obtained from the proposed methodology are compared with those from a representative reinforced panel, with typical topology and lay-up sequences. Then, benefits and drawbacks of these methodologies are presented. The design of composite structures by employing topology optimization became possible through the development of manufacturing techniques such as fiber placement, since this kind of optimization does not require a previously fixed material distribution inside of the structure. In this work, this possibility is explored by considering as objective function the mass minimization subjected to stress constraints. For composite modeling, an eight-node finite element shell element is implemented and then associated to the DMO technique, in order to optimize the material distribution within the domain and also the layup in regions where material was inserted. This methodology is then applied in various example cases, with different optimization formulations and loading conditions. Concluding, a typical aeronautical panel is conceptually designed and the results discussed and compared with a baseline panel configuration.
|
2 |
Projeto de painéis compósitos reforçados utilizando os métodos de otimização paramétrica e topológica. / Reinforced composite panels design using the parametric and topology optimization methods.Felipe Langellotti Silva 19 March 2015 (has links)
O crescimento do emprego de materiais compósitos e a flexibilização dos processos de manufatura permitem a adoção deste tipo de material em diversos casos que antes não eram explorados. Este trabalho investiga técnicas de otimização aplicáveis a painéis compósitos laminados e com reforçadores co-curados. Painéis reforçados são amplamente utilizados na indústria aeronáutica por conferirem resistência a carregamentos no plano e de flexão à elementos de baixo peso estrutural que são empregados em estruturas aeronáuticas típicas, como fuselagens. Por meio da otimização paramétrica que adota como variáveis de projeto parâmetros pré-definidos da estrutura, a geometria e posicionamento dos reforçadores, bem como a orientação das lâminas dos painéis e reforçadores compósitos são otimizadas. O problema de otimização é formulado como a maximização da carga de flambagem do painel, calculada através de um programa de Elementos Finitos comercial (Abaqus), sujeito a restrições de massa, máxima deformação admissível e ordem de empilhamento das camadas dentro do laminado. O método de Otimização Discreta de Material (ODM) é utilizado para parametrizar as variáveis de orientação do laminado, de modo a tentar reduzir a ocorrência de mínimos locais dentre as soluções encontradas pelo otimizador, o algoritmo Método das Assíntotas Móveis. Esta metodologia de implementação do problema de otimização é comparada com técnicas baseadas em Algoritmo Genético e variáveis contínuas de orientação das fibras. Os resultados obtidos por meio da metodologia proposta são comparados com aqueles de um painel reforçado representativo com geometria e sequência de empilhamento típicos e por fim, são apresentadas as vantagens e desvantagens entre as metodologias. Em seguida, a utilização de otimização topológica para o projeto de estruturas compósitas é explorada, considerando como função objetivo a maximização da rigidez do painel, sujeita a restrições de volume e de tensão. Neste tipo de otimização, não presume-se a existência de uma distribuição de material fixa na estrutura, com material podendo ser inserido ou retirado de dentro do domínio. O desenvolvimento de técnicas de manufatura com a deposição automática de fibras pré-impregnadas com matriz torna possível este tipo de projeto. Neste caso, para a modelagem do material compósito um elemento finito de casca de 8 nós é implementado e associado à técnica de ODM, de modo a otimizar a distribuição de material no domínio, juntamente com o empilhamento das camadas do laminado nas regiões que contém material. Este método é aplicado em diversos casos exemplos, com formulações de otimização e condições de carregamento diferentes. Ao final, um painel típico aeronáutico é conceitualmente projetado e os resultados são discutidos e comparados com uma configuração típica. / The increased use of composite materials and flexible manufacturing processes allows the application of this type of material in many cases not generally explored. This work investigates optimization techniques applied to composite panels with co-cured stiffeners. Reinforced panels are widely used in the aircraft industry to confer resistance under in-plane and bending loads for lightweight structural elements that are employed in typical aircraft structures such as fuselages. Through parametric optimization which considers as design variables pre-defined structure parameters, stringers geometric dimensions, their positioning, and also the stacking sequence of laminated composite material employed for the panel and stringers layups are optimized. The optimization problem is formulated as the maximization of the panel buckling load obtained through commercial Finite Element software (Abaqus), subjected to constraints such as mass, maximum allowable strains, and stacking order of the laminate. The Discrete Material Optimization (DMO) method is used to parameterize the laminate orientation variables in order to try reduce the occurrence of local minima in the solution found by the optimizer, the Method of Moving Assimptotes (MMA) algorithm. This implementation of the optimization problem is compared with Genetic Algorithm and continuous fiber orientation variables methodologies. The results obtained from the proposed methodology are compared with those from a representative reinforced panel, with typical topology and lay-up sequences. Then, benefits and drawbacks of these methodologies are presented. The design of composite structures by employing topology optimization became possible through the development of manufacturing techniques such as fiber placement, since this kind of optimization does not require a previously fixed material distribution inside of the structure. In this work, this possibility is explored by considering as objective function the mass minimization subjected to stress constraints. For composite modeling, an eight-node finite element shell element is implemented and then associated to the DMO technique, in order to optimize the material distribution within the domain and also the layup in regions where material was inserted. This methodology is then applied in various example cases, with different optimization formulations and loading conditions. Concluding, a typical aeronautical panel is conceptually designed and the results discussed and compared with a baseline panel configuration.
|
3 |
DESIGN, STRESS ANALYSES AND LIMIT LOAD OF SANDWICH STRUCTURES / DESIGN, STRESS ANALYSES AND LIMIT LOAD OF SANDWICH STRUCTURESLöffelmann, František January 2021 (has links)
Disertační práce začíná rešerší výpočtů pro návrh sendvičových nosníků, desek a složitějších konstrukcí, kde zaujímá významnou roli MKP. Dále jsou popsány optimalizační metody pro ujasnění široké oblasti matematického programování a základních principů topologické optimalizace až po její implementaci na kompozitní konstrukce jinými autory. Pro názornost jsou zmíněny jak analytické, tak i numerické přístupy k optimalizaci sendvičů, kde numerické přístupy umožňují řešit daleko širší oblast úkolů. Cíl disertační práce je stanoven jako implementace zautomatizovaného algoritmu pro optimalizaci za účelem vylepšení návrhového procesu sendvičů s ohledem na napjatost a únosnost. Cíle je dosaženo prostřednictvím vlastní implementace gradientní optimalizace založené na principech topologické optimalizace, známé jako diskrétní optimalizace materiálu (Discrete Material Optimization - DMO) a jejích variant, které pomáhají najít optimální vrstvení. Přístup k materiálové interpolaci a interpolaci poruchový omezujících podmínek je vyvinut a naprogramován v pythonu za použití teorie smykových deformací prvního řádu (First Order Shear Deformation Theory - FSDT) pro vyhodnocení napětí na elementech na základě zatížení daného MKP řešičem Nastran. Gradientní optimalizér hledá nejlepší materiály pro každou vrstvu potahu sendviče a jádra z definovaných kandidátů. Program je odzkoušený na příkladech různé složitosti od nosníku tvořeného jedním elementem, kde je skutečné optimum známé, až po praktickou úlohu sendvičové kuchyňky z dopravního letadla. Výsledky ukázaly, že algoritmus je schopen dosáhnout diskrétního řešení bez (významného) narušení omezujících podmínek a může tedy být prakticky využit ke zefektivnění koncepčního návrhu sendvičů.
|
Page generated in 0.1657 seconds