Spelling suggestions: "subject:"diseases off plants"" "subject:"diseases oof plants""
201 |
Resistance to root-lesion nematode (Pratylenchus thornei) in wild relatives of bread wheat (Triticum aestivum) and Iranian landrace wheats /Sheedy, Jason Glen. January 2004 (has links) (PDF)
Thesis (M.Ag.Sc.) - University of Queensland, 2005. / Includes bibliography.
|
202 |
Pathogenic characterization, distribution in Ohio and wheat genotype reactions to Stagonospora nodorum and Pyrenophora tritici-repentisEngle, Jessica S., January 2005 (has links)
Thesis (Ph.D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xxi, 195 p.; also includes graphics. Includes bibliographical references (p. 184-195). Available online via OhioLINK's ETD Center
|
203 |
Pathological factors affecting persistence in alfalfa with emphasis on diseases incited by Fusarium and Colletotrichum speciesAriss, Jennifer J., January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xiii, 118 p.; also includes graphics Includes bibliographical references (p. 114-118). Available online via OhioLINK's ETD Center
|
204 |
Characterization and efficacy testing of novel antifungal peptides in transgenic riceHerrmann, Revital. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisors: Thomas Evans, and Hugh Frick, Dept. of Plant and Soil Science. Includes bibliographical references.
|
205 |
The construction of an infectious clone of grapevine virus A (GV A) /Du Preez, Jacques. January 2005 (has links)
Thesis (MSc)--University of Stellenbosch, 2005. / Bibliography. Also available via the Internet.
|
206 |
Fungal endophytes, grasses and competition : an experimental and field approach /Rakocevic, Tomo. January 2005 (has links)
Thesis (M.Sc.)--York University, 2005. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 79-101). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR11880
|
207 |
Evaluation of Potential Organic Controls of Mummy Berry Disease Affecting Lowbush Blueberry in MaineMcGovern, Kristen B. January 2007 (has links) (PDF)
No description available.
|
208 |
Mechanism and synchronicity of wheat (Triticum aestivum) resistance to leaf rust (Puccinia triticina) and Russian wheat aphid (Duiraphis noxia) SA1Njom, Henry Akum January 2016 (has links)
Wheat (Triticum aestivum and T. Durum) is an extremely important agronomic crop produced worldwide. Wheat consumption has doubled in the last 30 years with approximately 600 million tons consumed per annum. According to the International Maize and Wheat Improvement Center, worldwide wheat demand will increase over 40 percent by 2020, while land as well as resources available for the production will decrease significantly if the current trend prevails. The wheat industry is challenged with abiotic and biotic stressors that lead to reduction in crop yields. Increase knowledge of wheat’s biochemical constitution and functional biology is of paramount importance to improve wheat so as to meet with this demand. Pesticides and fungicides are being used to control biotic stress imposed by insect pest and fungi pathogens but these chemicals pose a risk to the environment and human health. To this effect, there is re-evaluation of pesticides currently in use by the Environmental Protection Agency, via mandates of the 1996 Food Quality Protection Act and those with higher perceived risks are banned. Genetic resistance is now a more environmental friendly and effective method of controlling insect pest and rust diseases of wheat than the costly spraying with pesticides and fungicides. Although, resistant cultivars effectively prevent current prevailing pathotypes of leaf rust and biotypes of Russian wheat aphid from attacking wheat, new pathotypes and biotypes of the pathogen/pest may develop and infect resistant cultivars. Therefore, breeders are continually searching for new sources of resistance. Proteomic approaches can be utilised to ascertain target enzymes and proteins from resistant lines that could be utilised to augment the natural tolerance of agronomically favourable varieties of wheat. With this ultimate goal in mind, the aim of this study was to elucidate the mechanism and synchronicity of wheat resistance to leaf rust (Puccinia triticina) and Russian wheat aphid (Duiraphis noxia) SA1. To determine the resistance mechanism of the wheat cultivars to leaf rust infection and Russian wheat aphid infestation, a proteomics approach using two-dimensional gel electrophoresis was used in order to determine the effect of RWA SA1 on the wheat cultivars proteome. Differentially expressed proteins that were up or down regulated (appearing or disappearing) were identified using PDQuestTM Basic 2-DE Gel analysis software. Proteins bands of interest were in-gel trypsin digested as per the protocol described in Schevchenko et al. (2007) and analysed using a Dionex Ultimate 3000 RSLC system coupled to an AB Sciex 6600 TripleTOF mass spectrometer. Protein pilot v5 using Paragon search engine (AB Sciex) was used for comparison of the obtained MS/MS spectra with a custom database containing sequences of Puccinia triticina (Uniprot Swissprot), Triticum aestivum (Uniprot TrEMBL) and Russian wheat aphid (Uniprot TrEMBL) as well as a list of sequences from common contaminating proteins. Proteins with a threshold of ≥99.9 percent confidence were reported. A total of 72 proteins were putatively identified from the 37 protein spots excised originating from either leaf rust or Russian wheat aphid experiments. Sixty-three of these proteins were associated with wheat response to stress imposed by RWA SA1 feeding while 39 were associated with infection by Puccinia triticina. Several enzymes involved in the Calvin cycle, electron transport and ATP synthesis were observed to be differentially regulated suggesting greater metabolic requirements in the wheat plants following aphid infestation and leaf rust infection. Proteins directly associated with photosynthesis were also differentially regulated following RWA SA1 infestation and P.
|
209 |
Gall formation by Erwinia species on Douglas-firDeYoung, Robyn Merrilee January 1990 (has links)
Bacterial galls on Douglas-fir (Pseudotsuga menzeisii [Mirb.] Franco), collected from the southern tip of Vancouver Island, the Greater Vancouver area and the Hope region of British Columbia, were generally globose in shape with rough, irregular surfaces and measured between 0.5 and 2.0 cm in diameter. The galls were generally located on the tips of branches or twigs of 10- to 20-year old Douglas-fir trees.
The bacterial gall disease appeared to affect few Douglas-fir trees in the collection areas and bacterial galls were not found on any other coniferous species. Furthermore, there have been no reports of serious damage to natural forests in British Columbia due to bacterial gall disease. Young, greenhouse-grown Douglas-fir seedlings occasionally died if the tip of the main stem was artificially inoculated. Often new growing tips would be produced affecting the growth form of the seedlings.
Two types of gall-forming Erwinia spp. were isolated from Douglas-fir galls. Typical isolates, tentatively identified by fatty acid analysis as Erwinia salicis, produced galls which were rough and irregular in shape composed of multiple outgrowths marked by a single or cross-shaped fissure. The atypical isolate, tentatively identified by fatty acid analysis as Erwinia herbicola subsp. herbicola, produced galls which were smooth and generally round in shape with the surface cracking as the gall expanded.
Colonies of the typical isolates grown on casein-peptone-glucose media were characteristically round, slightly domed with
somewhat concentric ridging observed near the margins of the colonies. Three to 4 day old colonies of the atypical isolates grown on casein-peptone-glucose media were characteristically round and concave while older colonies produced an extracellular slime and were more irregular in shape. In Luria Broth, the typical isolates grew at temperatures of up to 32°C while the atypical isolate grew at temperatures of up 34°C. The typical isolate was resistant to a wider range of antibiotics than the atypical isolate.
Polyclonal antisera were produced against glutaraldehyde-fixed whole cells of both the typical T-2789 and atypical A-0181 gall-forming Erwinia isolates. The purified antisera were isolate specific as tested by immunodiffusion and an indirect ELISA against several different phytopathogenic bacteria including Pseudomonas syringae pv. syringae, Erwinia herbicola subsp. herbicola, Agrobacterium tumefaciens, Rhizobium leguminosarum and Erwinia carotovora subsp. carotovora.
Plasmid profiles of the typical Erwinia isolates contained one band while the atypical isolate characteristically contained 4 to 5 bands which appeared to be different forms of at least one plasmid. Restriction digests of the typical isolates suggested a size of approximately 50 kb while complex digestion profiles were obtained for the atypical isolates because of the difficulty in isolating individual plasmid types. From visual estimates against Hindlll-digested lambda DNA, a size of between 10 and 20 kb was suggested for the fastest moving plasmid band of the atypical isolate. No homology was observed between the different plasmid types characteristic of the two isolates. The
role of the plasmid DNA of the atypical isolate in pathogenesis was not determined because curing of the plasmid(s) was not successful using high temperature treatments plus chemical curing agents.
Heat treatment experiments, in which the pathogen was selectively killed at various times after inoculation, demonstrated that the bacteria are required to be present for gall induction and continued development of the gall for both of the gall-forming Erwinia isolate types.
Pathogenicity of the isolated bacteria was tested on 14 conifer species, other than Douglas-fir, including Abies, Chamaecyparis, Pinus and Thuja spp. The typical isolates were weakly pathogenic on Abies, Larix and Picea spp. The atypical isolate was weakly pathogenic on Abies, Chamaecyparis, Larix, Picea and Pinus spp. Due to the limited damage caused on the conifers tested and to their infrequent occurrence, these gall-forming pathogens do not appear to be of economic importance to the forestry industry. / Land and Food Systems, Faculty of / Graduate
|
210 |
Molecular cloning and analysis of a polygalacturonase-inhibiting protein (PGIP) gene from appleArendse, Melanie Samantha. 21 August 2012 (has links)
M.Sc. / Polygalacturonase-inhibiting proteins (PGIPs) are cell wall-associated plant proteins that inhibit endopolygalacturonases from phytopathogenic fungi. It has been proposed that pgip encoding genes could be utilised for engineering increased resistance in transgenic crops against important fungal pathogens such as Botrytis cinerea. During this study a pgip gene from Malus domestica cv Granny Smith apple fruit was cloned by the degenerate and inverse polymerase chain reaction (PCR) techniques. An alignment of the pear and bean PGIP sequences was used to design degenerate PCR primers in highly conserved regions. Degenerate PCR allowed the amplification of a 351bp internal fragment of the pgip gene, termed ipgip. The DNA sequence of ipgip was used to design inverse PCR primers. A Southern blot of apple genomic DNA probed with the ipgip fragment was used to identify restriction enzyme sites for inverse PCR. Inverse PCR enabled cloning of the remainder of the gene, from which a composite pgip gene sequence was constructed. The composite apple pgip gene comprised an open reading frame of 990bp that is predicted to encode a 330 amino acid polypeptide. The polypeptide contains a putative 24 amino acid N-terminal leader sequence that may function as a signal peptide for secretion. The deduced apple PGIP contains nine cysteine residues and seven potential N-linked glycosylation sites. Ten loosely conserved leucine-rich repeat motifs characteristic of PG1Ps were identified in the apple PGIP sequence. The apple PGIP showed 97% and 55% amino acid identity to the pear and bean PGIPs, respectively. The full-length apple pgip gene was re-isolated from genomic DNA by PCR using primers designed to the 5' and 3' ends of the composite pgip gene. The apple pgip gene was cloned into a plant transformation vector and transformed into tobacco by Agrobacterium-mediated transformation. Phenotypically normal transgenic tobacco plants were produced. Stable transgene insertion into the transgenic tobacco genomes was verified by PCR and Southern blot analyses. Sequence analysis of the pgip construct used for transformation revealed two potential mutations in the deduced amino acid sequence. The substitutions of Asp residues with Asn and Tyr at positions 43 and 196, respectively, could interfere with the secondary structure of the expressed transgene protein. To test whether the apple PGIP was effective against Botrytis cinerea, protein extracts were prepared from apple fruit and transgenic tobacco and tested for inhibitory activity against B. cinerea polygalacturonases. Biochemical assays showed that a heat-denaturable PGIP extract prepared from apple fruit inhibited the polygalacturonases produced by a virulent isolate of Botrytis cinerea grown on pectin and apple cell walls. Protein extracts prepared from transgenic tobacco did not show any inhibitory activity towards Botrytis polygalacturonases. This suggests the absence of active PGIP in the extracts possibly due to inefficient transcription of the transgene or due to the introduced mutations.
|
Page generated in 0.0789 seconds