• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation of the rheological behavior of fresh concrete / Numerische Simulation des rheologischen Verhaltens von Frischbeton

Shyshko, Sergiy 22 January 2014 (has links) (PDF)
This thesis reports recent numerical investigation of the rheological behavior of fresh concrete using the Distinct Element Method (DEM). Some relevant questions of the concrete rheology e.g. the influence of the concrete composition on the rheological behavior of the fresh concrete, the experimental determination of the Bingham rheological constants as well as the use of these constants in the numerical simulation were discussed thoroughly. An important topic of the performed investigation was the development of the numerical model for fresh concrete which enables simple, fast and stable predictive simulation of different technological operations with fresh concrete. Firstly, in a literature survey, the state-of-the-art of the numerical simulation of fresh concrete was presented and critically discussed in order to show advantages and disadvantages of other methods and modeling approaches. Open (unsolved) questions were highlighted and the basis for their investigation is created within this thesis. Fundamental concepts of the rheology were then presented and the basic rheological models of viscoelastic materials were considered; the rheological behaviors of different types of concretes were presented and its influencing factors were discussed. Additionally main methods for scientific investigation and testing of the fresh concrete were shown. The test methods were critically discussed in order to select the test, which has been used as a reference experimental test for the numerical simulations. Chosen reference experimental test was the slump flow test. The slump flow test was thoroughly analyzed and an analytical solution was developed which helps to interpret the results of measurements and provides a link between rheological constants and measured quantities. In a further step an extensive experimental program was carried out in order to investigate the rheological behavior of fresh concrete and get the input data for numerical simulation. Firstly, the experiments on macrolevel were performed. Here the rheological behavior of the fresh concrete flow in different tests was investigated (slump and slump flow tests, L-Box). Further, the experiments on mesolevel with polymer on Carbopol basis and mortar were developed and performed in order to investigate the interaction between distinct particles suspended in a fluid matrix. The necessary material parameters, especially those representative of the fluid suspension micromechanical behavior, i.e. the force-displacement relationship, yield force and bond strength, were determined by these experiments. The slump flow test was used as the basic test to calibrate the model for fresh concrete (key data: slump value, slump flow diameter (for concretes with a soft consistency) and the time of spreading). Thus, the decisive phenomena of the fresh concrete flow were highlighted, control points for a contact model were selected and the initial input data for the development of the contact model was obtained. Next, the user-defined contact model was developed and implemented into the Particle Flow Code ITASCA. The contact model was completely described and its limitations discussed. Then, the set of numerical tools was developed, which enable simplified and stable numerical simulation of the fresh concrete with particular behavior, i.e. automatic generation of the concrete with given particle grading, amount of fibers and air, automatic recalculation of the micromechanical parameters of the contact model from given initial yield stress and plastic viscosity. The model was calibrated by slump flow test simulations and validated by corresponding analytical approach. Further, the role of different model parameters was investigated by simulating the slump flow test. Furthermore, for verification of the model several additional experiments were simulated, i.e. L-Box and LCPC-box test. The results of modeling were compared with experimental results and discussed in detail. All numerical simulations provide qualitatively as well as quantitatively correct results and hence adequately represent the phenomena observed in real experiments. The thesis closes with general conclusions and outlook of the work. In the future, the developed contact model and tools of the “Virtual concrete laboratory” could be modified in order to extend the potential of the laboratory to cover such properties as thixotropic behavior of fresh concrete or simulating hardening of the concrete and behavior of the hardened concrete.
2

Numerical simulation of the rheological behavior of fresh concrete

Shyshko, Sergiy 23 September 2013 (has links)
This thesis reports recent numerical investigation of the rheological behavior of fresh concrete using the Distinct Element Method (DEM). Some relevant questions of the concrete rheology e.g. the influence of the concrete composition on the rheological behavior of the fresh concrete, the experimental determination of the Bingham rheological constants as well as the use of these constants in the numerical simulation were discussed thoroughly. An important topic of the performed investigation was the development of the numerical model for fresh concrete which enables simple, fast and stable predictive simulation of different technological operations with fresh concrete. Firstly, in a literature survey, the state-of-the-art of the numerical simulation of fresh concrete was presented and critically discussed in order to show advantages and disadvantages of other methods and modeling approaches. Open (unsolved) questions were highlighted and the basis for their investigation is created within this thesis. Fundamental concepts of the rheology were then presented and the basic rheological models of viscoelastic materials were considered; the rheological behaviors of different types of concretes were presented and its influencing factors were discussed. Additionally main methods for scientific investigation and testing of the fresh concrete were shown. The test methods were critically discussed in order to select the test, which has been used as a reference experimental test for the numerical simulations. Chosen reference experimental test was the slump flow test. The slump flow test was thoroughly analyzed and an analytical solution was developed which helps to interpret the results of measurements and provides a link between rheological constants and measured quantities. In a further step an extensive experimental program was carried out in order to investigate the rheological behavior of fresh concrete and get the input data for numerical simulation. Firstly, the experiments on macrolevel were performed. Here the rheological behavior of the fresh concrete flow in different tests was investigated (slump and slump flow tests, L-Box). Further, the experiments on mesolevel with polymer on Carbopol basis and mortar were developed and performed in order to investigate the interaction between distinct particles suspended in a fluid matrix. The necessary material parameters, especially those representative of the fluid suspension micromechanical behavior, i.e. the force-displacement relationship, yield force and bond strength, were determined by these experiments. The slump flow test was used as the basic test to calibrate the model for fresh concrete (key data: slump value, slump flow diameter (for concretes with a soft consistency) and the time of spreading). Thus, the decisive phenomena of the fresh concrete flow were highlighted, control points for a contact model were selected and the initial input data for the development of the contact model was obtained. Next, the user-defined contact model was developed and implemented into the Particle Flow Code ITASCA. The contact model was completely described and its limitations discussed. Then, the set of numerical tools was developed, which enable simplified and stable numerical simulation of the fresh concrete with particular behavior, i.e. automatic generation of the concrete with given particle grading, amount of fibers and air, automatic recalculation of the micromechanical parameters of the contact model from given initial yield stress and plastic viscosity. The model was calibrated by slump flow test simulations and validated by corresponding analytical approach. Further, the role of different model parameters was investigated by simulating the slump flow test. Furthermore, for verification of the model several additional experiments were simulated, i.e. L-Box and LCPC-box test. The results of modeling were compared with experimental results and discussed in detail. All numerical simulations provide qualitatively as well as quantitatively correct results and hence adequately represent the phenomena observed in real experiments. The thesis closes with general conclusions and outlook of the work. In the future, the developed contact model and tools of the “Virtual concrete laboratory” could be modified in order to extend the potential of the laboratory to cover such properties as thixotropic behavior of fresh concrete or simulating hardening of the concrete and behavior of the hardened concrete.
3

Einflüsse auf den Suffosionsverlauf in binären granularen Packungen

Welsch, Johannes 05 October 2022 (has links)
Suffosion ist ein hydromechanischer Prozess, welcher die Umlagerung und den Transport von feinen Partikeln eines Bodens infolge einer Wasserströmung beschreibt. Als Folge des Materialverlustes vergrößert sich die Porenzahl und die Dichte verringert sich, wodurch sich auch die hydraulischen und bodenmechanischen Eigenschaften des Bodens verändern. Um die Auswirkungen einer Suffosion besser bewerten zu können, wurden die Einflüsse von geometrischen Faktoren (Anfangsfeinanteil und Probendichte), hydraulischen Faktoren (Filtergeschwindigkeit) sowie der effektiven Spannung untersucht. Anhand von 3D-DEM Simulationen mit binären Mischungen wurde die Struktur (Kontakt- und Kontaktkraftverteilung) eines suffosionsanfälligen Bodens und ihre Änderung infolge der genannten Einflüsse untersucht. Hierbei kann klar erkannt werden, dass die feinen Anteile einer Mischung weniger kontaktiert werden als die groben und auch weniger Kontaktkräfte übertragen. Mit steigender Dichte und steigendem Feinanteil steigen allerdings auch die Kontakte und übertragenen Kontaktkräfte der feinen Partikel deutlich an. Anhand von Laborversuchen mit isotroper Belastung und konstanter Durchströmung, wurden die Auswirkungen der verschiedenen Faktoren auf die ausgetragene Materialmenge, die hydraulischen Eigenschaften des Bodens und die infolgedessen auftretenden Verformungen untersucht. Es zeigt sich ein Anstieg der ausgetragenen Materialmenge für einen steigenden Feinanteil, eine steigende hydraulische Einwirkung, sowie eine geringere Probendichte und eine geringere isotrope Belastung. Mit steigender Materialdichte und abnehmender hydraulischer Einwirkung konnte eine Abnahme des Durchlässigkeitsbeiwertes gezeigt werden, welche auf eine Ablagerung von transportierten Partikeln hindeutet. Eine Dimensionsanalyse der Ergebnisse kann einen direkten Zusammenhang zwischen ausgetragenem Feinmaterial und volumetrischer Dehnung des Probekörpers infolge Suffosion zeigen, welcher durch einen Vergleich mit Ergebnissen aus der Literatur bestätigt werden kann. An erodierten Proben wurden drainierte Triaxialversuche durchgeführt. Die Ergebnisse zeigen, dass das qualitative Verhalten der erodierten, sowie der intakten Proben hauptsächlich von der relativen Lagerungsdichte des Grobmaterials bestimmt wird. Weiterhin konnte anhand eines Vergleiches mit Literaturergebnissen gezeigt werden, dass hauptsächlich der Bodenzustand vor der Scherung, beschrieben durch Porenzahl und Porenzahl des Grobmaterials, das Scherverhalten bestimmen. Die Art wie dieser Zustand erreicht wurde, ob durch Suffosion oder künstlich hergestellt, scheint keinen wesentlichen Einfluss auf den maximalen Spannungszustand η = q/p0 während der Scherung zu haben. Weiterhin wurde der Erosionsdurchbruch in feinkörnigen Böden infolge einer Kontakterosion an der Grenzfläche eines feinkörnigen Dichtmaterials zu einem grobkörnigen Filtermaterial untersucht. Hierfür wurden künstlich hergestellte, geschichtete Proben durchströmt, um den kritischen hydraulischen Gradienten für einen Erosionsdurchbruch zu ermitteln. Es wurde hierbei festgestellt, dass der Gradient infolge einer steigenden effektiven Spannung und einem steigenden Überkonsolidierungsgrad des Dichtmaterials sowie einem kleineren Porendurchmesser des Filtermaterials steigt. Anhand einer Dimensionsanalyse konnte gezeigt werden, dass der kritische Gradient auch von der Bodenart abhängen muss.

Page generated in 0.0545 seconds