• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 146
  • 41
  • 28
  • 18
  • 13
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 712
  • 324
  • 201
  • 184
  • 173
  • 161
  • 106
  • 100
  • 85
  • 80
  • 58
  • 58
  • 56
  • 56
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variations of dissolved oxygen in the Estuary and Gulf of St. Lawrence

Filion, Audrey. January 1982 (has links)
No description available.
2

The Effects of Total Dissolved Solids on Locomotory Behavior and Body Weight of Streamside Salamanders, and a Baseline Survey of Salamander Diversity and Abundance

Pascuzzi, Meghan 16 April 2012 (has links)
Increased levels of total dissolved solids (TDS) in stream habitats are of concern due to salinity as well as the presence of potentially toxic ions. Natural gas drilling in the Marcellus shale could increase TDS in nearby streams. This thesis investigated the effects of water with elevated TDS on the locomotory activity and body weight of the streamside salamander Desmognathus ochrophaeus. Salamanders were exposed to water collected from streams in southwest Pennsylvania with elevated TDS as well as synthetic ion solutions that mimicked the ionic composition found in streams. Chronic, but not acute exposure to solutions of 1000 ppm TDS caused significant differences in weight loss and locomotory activity, although the effect depended on the exact ion composition of the dissolved solids. Finally, field surveys of salamander abundance were completed on two streams to provide baseline data with which to track population changes should the TDS in the streams increase. / Bayer School of Natural and Environmental Sciences / Biological Sciences / MS / Thesis
3

Variations of dissolved oxygen in the Estuary and Gulf of St. Lawrence

Filion, Audrey. January 1982 (has links)
No description available.
4

THE CONTROLS AND DRIVERS OF DISSOLVED ORGANIC CARBON QUANTITY AND DISSOLVED ORGANIC MATTER QUALITY IN AN IMPACTED GREAT LAKES WATERSHED

Singh, Supriya January 2019 (has links)
Intensely managed and modified catchments in the Great Lakes are linked to eutrophication and hypoxia of receiving water bodies downstream, resulting in water quality impairment, and adverse impacts on aquatic ecology. While much focus has been on the role of phosphorous and nitrogen, dissolved organic carbon (DOC) plays a complex and critical role in lake biogeochemical cycles, as it influences the interations between nutrients and contaminants in water and soil through processes of mobilization, transport, biological uptake, and deposition. Human-dominated landscapes have a range of consequences on DOC dynamics as catchment hydrology, plant cover, and nutrient inputs are altered in these environments. As such, the objectives of this study were to identify the controls and drivers of DOC quantity and DOM quality in the Spencer Creek watershed, which is the largest contributor of water to Cootes Paradise that ultimately drains into Lake Ontario. The 159 km2 study area of the catchment is complex, as the present landscape is composed of a mosaic of various land uses including agriculture, forest, wetland, urban, and industrial regions. Flow alterations contribute to the complexity of the watershed as there are managed reservoirs and alterations in water courses. From 2016- 2018, hydrometric data was collected across 9 monitoring sites, along with surface water samples that were analyzed for DOC concentration and optical properties. Results indicate differences in flow magnitudes and stream DOC between dry and wet conditions, where concentrations during wet conditions were significantly higher compared to dry. Additionally, there was substantial variation in DOC concentration and quality across the Spencer Creek watershed. DOC concentrations were found to be the lowest at groundwater influenced sites in the headwaters of the watershed, and the highest in the mid-catchment region where DOC quality was strongly influenced by wetland sources. The reservoir-influenced sites showed relatively intermediate concentrations of DOC, with quality that exhibited strong microbial signatures. At the outlet, DOC concentrations were attenuated and DOC quality was intermediate between allochthonous and autochthonous end members, reflecting upstream mixing processes. These processes were presented as a conceptual model of water and DOC movement through the Spencer Creek watershed. The implications of this research suggest that with anticipated wetter and warmer conditions DOC concentrations would increase in the watershed. The repercussions of increased DOC concentrations overall imply a decrease of terrestrial carbon storage, and greater input into more reactive and susceptible pools, which may result in further water quality degradation. Overall, the findings from this research provide insight into the fate and transport of water and DOC in a complex, managed catchment in the Great Lakes region, with the aims of providing key information for local stakeholders. / Thesis / Master of Science (MSc)
5

The behaviour of carbonyl sulphide in the ocean : field and modelling studies

Hobe, Marc von January 2000 (has links)
No description available.
6

The effects of turbidity on the rate of biochemical oxidation

Chueh, Jiaan-Hwa January 2010 (has links)
Digitized by Kansas Correctional Industries
7

The effects of various levels of dissolved oxygen on fish reproduction

Fisher, Shelly Erin 22 June 2010
Adequate levels of dissolved oxygen (DO) are essential to the health of most aquatic organisms. While diel fluctuations in DO concentration are a normal occurrence in aquatic ecosystems, anthropogenically-produced periods of prolonged hypoxia have the potential to cause changes in growth, reproduction and behaviour in animals. My thesis examined reproductive behaviour and physiology of fathead minnows (Pimephales promelas) following exposure to several concentrations of dissolved oxygen. Using a custom-built system that was able to maintain DO concentrations at precise levels, reproductive performance was analyzed under 3.5 mg/l, 4.5 mg/l, 5.5 mg/l and a control of 7.5 mg/l of DO. A second experiment evaluated reproductive performance at 5.0, 5.7, 6.5 and 7.5(control) mg/L.<p> Breeding attempts ceased altogether at 4.5 mg/l and lower. At higher concentrations, the effects of DO on reproductive output were contradictory between experiments. When DO was maintained at 5.5 mg/L in the first experiment, egg production was lower than in the controls. When DO levels of 5.7 mg/L were used in the second experiment, egg production was higher than in the controls. Courtship behaviour decreased significantly compared to the control at DO levels of 4.5 mg/L and lower. No significant differences were observed between treatments in morphometrics, survival, larval deformities, sex steroid levels, vitellogenin levels, hatching success, egg size, fertility, or gonad histology.<p> The results of this study demonstrate that reproductive behaviour may represent a sensitive early marker of reproductive impairment in fathead minnows. Inconsistencies between the two experiments suggest a possible hormetic effect in response to depressed DO in fathead minnows. My results have important implications with respect to Canadian water quality guidelines and applications in the restoration of aquatic systems with lowered DO due to human activities.
8

The effects of various levels of dissolved oxygen on fish reproduction

Fisher, Shelly Erin 22 June 2010 (has links)
Adequate levels of dissolved oxygen (DO) are essential to the health of most aquatic organisms. While diel fluctuations in DO concentration are a normal occurrence in aquatic ecosystems, anthropogenically-produced periods of prolonged hypoxia have the potential to cause changes in growth, reproduction and behaviour in animals. My thesis examined reproductive behaviour and physiology of fathead minnows (Pimephales promelas) following exposure to several concentrations of dissolved oxygen. Using a custom-built system that was able to maintain DO concentrations at precise levels, reproductive performance was analyzed under 3.5 mg/l, 4.5 mg/l, 5.5 mg/l and a control of 7.5 mg/l of DO. A second experiment evaluated reproductive performance at 5.0, 5.7, 6.5 and 7.5(control) mg/L.<p> Breeding attempts ceased altogether at 4.5 mg/l and lower. At higher concentrations, the effects of DO on reproductive output were contradictory between experiments. When DO was maintained at 5.5 mg/L in the first experiment, egg production was lower than in the controls. When DO levels of 5.7 mg/L were used in the second experiment, egg production was higher than in the controls. Courtship behaviour decreased significantly compared to the control at DO levels of 4.5 mg/L and lower. No significant differences were observed between treatments in morphometrics, survival, larval deformities, sex steroid levels, vitellogenin levels, hatching success, egg size, fertility, or gonad histology.<p> The results of this study demonstrate that reproductive behaviour may represent a sensitive early marker of reproductive impairment in fathead minnows. Inconsistencies between the two experiments suggest a possible hormetic effect in response to depressed DO in fathead minnows. My results have important implications with respect to Canadian water quality guidelines and applications in the restoration of aquatic systems with lowered DO due to human activities.
9

Dissolved organic carbon dynamics in tallgrass prairie streams

Higgs, Sophie Alexandra January 1900 (has links)
Master of Science / Division of Biology / Walter K. Dodds / Contrary to the previous notion that a stream acts primarily as the transporter of materials from land to oceans, research has shown that in-stream processing of organic matter and nutrients is significant and relevant at a global scale. Dissolved organic carbon (DOC) is the most abundant form of organic carbon in streams and has been demonstrated as an important source of energy supporting stream food webs. Understanding the dynamics of DOC in streams is, therefore, important in determining the contribution of flowing waters to global carbon storage and release. However, DOC exists as many different compounds, varying in source, composition, and quality. The composition of DOC that ends up in streams is partly controlled by the surrounding watershed, and landscape effects on DOC quality and quantity in streams have been observed. In the North American Tallgrass prairie, woody encroachment has led to changes in riparian vegetation, potentially altering the DOC received by the stream, and making it important to understand rates of DOC transformation as landscape alterations continue. The heterogeneity of the DOC pool makes it difficult to fully describe its components and to measure transformation rates. DOC uptake, or biological use, has been estimated through several methods including in-stream additions of various DOC sources and bottle incubations of stream water and sediments. One problem with addition methods for calculating uptake is that the DOC pool is difficult to replicate and additions of simple compounds or organic leachates do not represent total dissolved organic carbon (TDOC) dynamics. Another potential issue is that additions of a labile compound could potentially alter microbial activity through a priming effect and therefore distort ambient DOC uptake estimates. Finally, uptake parameters are mostly calculated assuming benthic uptake while recent studies have shown that planktonic uptake of DOC can also be significant. We conducted this study with these three considerations in mind. In the first chapter, we describe our use of in situ additions of glucose and bur oak leaf leachate in prairie stream reaches and concentrations of specific components to determine uptake dynamics of various specific DOC components, from a simple sugar to more complex plant compounds. We calculated uptake parameters of glucose and two different oak leaf components. We found that using glucose concentrations rather than TDOC concentrations, as has been done in previous studies, to measure uptake parameters resulted in higher uptake rates, indicating the importance of measuring the specific component added. Through leaf leachate additions, we found that an amino acid like component was consistently taken up faster than a humic-like component. The second chapter addresses the questions of uptake location and priming through a series of recirculating chamber incubations. We found that benthic uptake of leaf leachate was more important than that in the water column. Finally, elevated uptake of one leaf leachate component in the presence of glucose indicated a priming effect on microbial DOC uptake.
10

Dissolution and precipitation of air in dissolved air flotation

Steinbach, Sandra 20 August 2012 (has links)
D.Ing. / The use of dissolved air flotation (DAF) as a water clarification process has gained momentum over the past two decades. Despite its increased application there is a lack of information concerning the understanding of the underlying principles of the process. Plants are being designed based mainly on empirical guidelines, especially with respect to the bubble production system. Bubbles are generated in the DAF process when water, supersaturated with air under pressure, is released under atmospheric conditions. The efficiency of air dissolution and precipitation determines the quantity of air available for flotation and thus, to a large extent, the success of the whole DAF process. The first part of this thesis deals with a rational model for predicting the air transfer efficiency in packed saturators which are used in most modern DAF plants to dissolve air into water. The model assumes the Lewis-Whitman two-film theory for interfacial mass transfer and uses the Onda correlations to estimate the mass transfer coefficient. The model provides good insight into the effects of key design parameters on the air transfer efficiency. The experimental verification of the model required a method for predicting the saturator air composition and a technique to practically determine the air transfer efficiency in the packed bed of an operating saturator. Both methods are described in detail in this study. The verification of the mass transfer model showed a close agreement of experimental and theoretical results and the model thus provides a powerful tool for the design of packed saturators. The second part of the thesis deals with air precipitation and the quantity of air released after depressurization. Based on a literature review on this subject it was assumed that the air release is incomplete and that it would be a function of the operating conditions of the saturation system as well as of the design of the injection nozzle across which the pressure is released. Since the injection nozzles play an important role in the DAF process numerous experiments were carried out which measured the released air volume for different nozzle configurations and saturator pressures. The results of this study showed that the air release after depressurization is indeed incomplete and that it takes a long time for all the excess air to come out of solution. It was found that the efficiency with which the air was released is a function of the saturator pressure and the nozzle design. The experimental observations led to the formulation of a two-step air release model, which explains the precipitation process in terms of a slow and fast release step. The mathematical framework for quantification of the model is provided. Once the model is quantified it will be possible to compare the performance of different injection nozzles solely with regard to their design features and independent of any parameters influencing the air release downstream of the nozzle. This model may then help to further the understanding of the precipitation process and could lead to the development of some rational guidelines for nozzle design and prediction of nozzle performance.

Page generated in 0.0395 seconds