1 |
Route Assignment for Distributed Leased Lines in Mobile Cellular NetworkHuang, Yung-chia 09 July 2007 (has links)
When a large number of base stations fail due to the breakdown of some transmission circuit in a mobile cellular network, base stations located in neighboring areas may take over those malfunctioned base stations and continue to provide the access service of mobile communications for users in surrounding areas, thereby reducing the area in which mobile communications are out of service. Therefore, if leased circuits in base stations could complete the route distribution configuration prior to the onset of malfunction, it could decrease the impact of circuit breakdown and traffic loss. Also, the efficiency would be improved if the circuit assignment personnel could complete the job when the leased lines are less, while avoiding reassignment in the future and enhancing the mobile communications operations.
In this study, we use a graph structure to represent the present mobile cellular network and establish the route-selection strategies. We define the "Optimal Route Assignment" for a newly constructed base station, which refers to the route assignment that causes least impact on disconnection area when any circuit in the network is broken. We also propose to use A* algorithm for optimal route assignment. However, the computation for the optimal route is time consuming. Measures such as computation time and least hops are considered in designing other strategies for route assignment. These strategies are parametric and we carried out experiments by adjusting and controlling parameters using real routing data.
The experimental results demonstrate that there is no single winner among the proposed strategies. We identify a number of best strategies for different operating regions.
|
Page generated in 0.1165 seconds