Spelling suggestions: "subject:"données fonctionnelle""
41 |
Estimation robuste de courbes de consommmation électrique moyennes par sondage pour de petits domaines en présence de valeurs manquantes / Robust estimation of mean electricity consumption curves by sampling for small areas in presence of missing valuesDe Moliner, Anne 05 December 2017 (has links)
Dans cette thèse, nous nous intéressons à l'estimation robuste de courbes moyennes ou totales de consommation électrique par sondage en population finie, pour l'ensemble de la population ainsi que pour des petites sous-populations, en présence ou non de courbes partiellement inobservées.En effet, de nombreuses études réalisées dans le groupe EDF, que ce soit dans une optique commerciale ou de gestion du réseau de distribution par Enedis, se basent sur l'analyse de courbes de consommation électrique moyennes ou totales, pour différents groupes de clients partageant des caractéristiques communes. L'ensemble des consommations électriques de chacun des 35 millions de clients résidentiels et professionnels Français ne pouvant être mesurées pour des raisons de coût et de protection de la vie privée, ces courbes de consommation moyennes sont estimées par sondage à partir de panels. Nous prolongeons les travaux de Lardin (2012) sur l'estimation de courbes moyennes par sondage en nous intéressant à des aspects spécifiques de cette problématique, à savoir l'estimation robuste aux unités influentes, l'estimation sur des petits domaines, et l'estimation en présence de courbes partiellement ou totalement inobservées.Pour proposer des estimateurs robustes de courbes moyennes, nous adaptons au cadre fonctionnel l'approche unifiée d'estimation robuste en sondages basée sur le biais conditionnel proposée par Beaumont (2013). Pour cela, nous proposons et comparons sur des jeux de données réelles trois approches : l'application des méthodes usuelles sur les courbes discrétisées, la projection sur des bases de dimension finie (Ondelettes ou Composantes Principales de l'Analyse en Composantes Principales Sphériques Fonctionnelle en particulier) et la troncature fonctionnelle des biais conditionnels basée sur la notion de profondeur d'une courbe dans un jeu de données fonctionnelles. Des estimateurs d'erreur quadratique moyenne instantanée, explicites et par bootstrap, sont également proposés.Nous traitons ensuite la problématique de l'estimation sur de petites sous-populations. Dans ce cadre, nous proposons trois méthodes : les modèles linéaires mixtes au niveau unité appliqués sur les scores de l'Analyse en Composantes Principales ou les coefficients d'ondelettes, la régression fonctionnelle et enfin l'agrégation de prédictions de courbes individuelles réalisées à l'aide d'arbres de régression ou de forêts aléatoires pour une variable cible fonctionnelle. Des versions robustes de ces différents estimateurs sont ensuite proposées en déclinant la démarche d'estimation robuste basée sur les biais conditionnels proposée précédemment.Enfin, nous proposons quatre estimateurs de courbes moyennes en présence de courbes partiellement ou totalement inobservées. Le premier est un estimateur par repondération par lissage temporel non paramétrique adapté au contexte des sondages et de la non réponse et les suivants reposent sur des méthodes d'imputation. Les portions manquantes des courbes sont alors déterminées soit en utilisant l'estimateur par lissage précédemment cité, soit par imputation par les plus proches voisins adaptée au cadre fonctionnel ou enfin par une variante de l'interpolation linéaire permettant de prendre en compte le comportement moyen de l'ensemble des unités de l'échantillon. Des approximations de variance sont proposées dans chaque cas et l'ensemble des méthodes sont comparées sur des jeux de données réelles, pour des scénarios variés de valeurs manquantes. / In this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of each customer so these mean curves are estimated using samples. In this thesis, we extend the work of Lardin (2012) on mean curve estimation by sampling by focusing on specific aspects of this problem such as robustness to influential units, small area estimation and estimation in presence of partially or totally unobserved curves.In order to build robust estimators of mean curves we adapt the unified approach to robust estimation in finite population proposed by Beaumont et al (2013) to the context of functional data. To that purpose we propose three approaches : application of the usual method for real variables on discretised curves, projection on Functional Spherical Principal Components or on a Wavelets basis and thirdly functional truncation of conditional biases based on the notion of depth.These methods are tested and compared to each other on real datasets and Mean Squared Error estimators are also proposed.Secondly we address the problem of small area estimation for functional means or totals. We introduce three methods: unit level linear mixed model applied on the scores of functional principal components analysis or on wavelets coefficients, functional regression and aggregation of individual curves predictions by functional regression trees or functional random forests. Robust versions of these estimators are then proposed by following the approach to robust estimation based on conditional biais presented before.Finally, we suggest four estimators of mean curves by sampling in presence of partially or totally unobserved trajectories. The first estimator is a reweighting estimator where the weights are determined using a temporal non parametric kernel smoothing adapted to the context of finite population and missing data and the other ones rely on imputation of missing data. Missing parts of the curves are determined either by using the smoothing estimator presented before, or by nearest neighbours imputation adapted to functional data or by a variant of linear interpolation which takes into account the mean trajectory of the entire sample. Variance approximations are proposed for each method and all the estimators are compared to each other on real datasets for various missing data scenarios.
|
42 |
Analyse statistique de données fonctionnelles à structures complexesAdjogou, Adjobo Folly Dzigbodi 05 1900 (has links)
No description available.
|
43 |
Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into accountLardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
|
44 |
Essays in functional econometrics and financial marketsTsafack-Teufack, Idriss 07 1900 (has links)
Dans cette thèse, j’exploite le cadre d’analyse de données fonctionnelles et développe
l’analyse d’inférence et de prédiction, avec une application à des sujets sur les marchés
financiers. Cette thèse est organisée en trois chapitres.
Le premier chapitre est un article co-écrit avec Marine Carrasco. Dans ce chapitre,
nous considérons un modèle de régression linéaire fonctionnelle avec une variable
prédictive fonctionnelle et une réponse scalaire. Nous effectuons une comparaison
théorique des techniques d’analyse des composantes principales fonctionnelles (FPCA)
et des moindres carrés partiels fonctionnels (FPLS). Nous déterminons la vitesse de
convergence de l’erreur quadratique moyen d’estimation (MSE) pour ces méthodes.
Aussi, nous montrons cette vitesse est sharp. Nous découvrons également que le biais
de régularisation de la méthode FPLS est plus petit que celui de FPCA, tandis que
son erreur d’estimation a tendance à être plus grande que celle de FPCA. De plus,
nous montrons que le FPLS surpasse le FPCA en termes de prédiction avec moins de
composantes.
Le deuxième chapitre considère un modèle autorégressif entièrement fonctionnel
(FAR) pour prèvoir toute la courbe de rendement du S&P 500 a la prochaine journée.
Je mène une analyse comparative de quatre techniques de Big Data, dont la méthode de
Tikhonov fonctionnelle (FT), la technique de Landweber-Fridman fonctionnelle (FLF), la
coupure spectrale fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS).
La vitesse de convergence, la distribution asymptotique et une stratégie de test statistique
pour sélectionner le nombre de retard sont fournis. Les simulations et les données réelles
montrent que les méthode FPLS performe mieux les autres en terme d’estimation du
paramètre tandis que toutes ces méthodes affichent des performances similaires en termes
de prédiction.
Le troisième chapitre propose d’estimer la densité de neutralité au risque (RND) dans
le contexte de la tarification des options, à l’aide d’un modèle fonctionnel. L’avantage de
cette approche est qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible
d’éviter toute sorte de paramétrisation. L’estimation conduit à un problème d’inversibilité
et la technique fonctionnelle de Landweber-Fridman (FLF) est utilisée pour le surmonter. / In this thesis, I exploit the functional data analysis framework and develop inference,
prediction and forecasting analysis, with an application to topics in the financial market.
This thesis is organized in three chapters.
The first chapter is a paper co-authored with Marine Carrasco. In this chapter,
we consider a functional linear regression model with a functional predictor variable
and a scalar response. We develop a theoretical comparison of the Functional Principal
Component Analysis (FPCA) and Functional Partial Least Squares (FPLS) techniques.
We derive the convergence rate of the Mean Squared Error (MSE) for these methods. We
show that this rate of convergence is sharp. We also find that the regularization bias of
the FPLS method is smaller than the one of FPCA, while its estimation error tends to
be larger than that of FPCA. Additionally, we show that FPLS outperforms FPCA in
terms of prediction accuracy with a fewer number of components.
The second chapter considers a fully functional autoregressive model (FAR) to forecast
the next day’s return curve of the S&P 500. In contrast to the standard AR(1) model
where each observation is a scalar, in this research each daily return curve is a collection
of 390 points and is considered as one observation. I conduct a comparative analysis
of four big data techniques including Functional Tikhonov method (FT), Functional
Landweber-Fridman technique (FLF), Functional spectral-cut off (FSC), and Functional
Partial Least Squares (FPLS). The convergence rate, asymptotic distribution, and a
test-based strategy to select the lag number are provided. Simulations and real data
show that FPLS method tends to outperform the other in terms of estimation accuracy
while all the considered methods display almost the same predictive performance.
The third chapter proposes to estimate the risk neutral density (RND) for options
pricing with a functional linear model. The benefit of this approach is that it exploits
directly the fundamental arbitrage-free equation and it is possible to avoid any additional
density parametrization. The estimation problem leads to an inverse problem and the
functional Landweber-Fridman (FLF) technique is used to overcome this issue.
|
45 |
Contributions à l'analyse de données fonctionnelles multivariées, application à l'étude de la locomotion du cheval de sport / Contributions to the analysis of multivariate functional data, application to the study of the sport horse's locomotionSchmutz, Amandine 15 November 2019 (has links)
Avec l'essor des objets connectés pour fournir un suivi systématique, objectif et fiable aux sportifs et à leur entraineur, de plus en plus de paramètres sont collectés pour un même individu. Une alternative aux méthodes d'évaluation en laboratoire est l'utilisation de capteurs inertiels qui permettent de suivre la performance sans l'entraver, sans limite d'espace et sans procédure d'initialisation fastidieuse. Les données collectées par ces capteurs peuvent être vues comme des données fonctionnelles multivariées : se sont des entités quantitatives évoluant au cours du temps de façon simultanée pour un même individu statistique. Cette thèse a pour objectif de chercher des paramètres d'analyse de la locomotion du cheval athlète à l'aide d'un capteur positionné dans la selle. Cet objet connecté (centrale inertielle, IMU) pour le secteur équestre permet de collecter l'accélération et la vitesse angulaire au cours du temps, dans les trois directions de l'espace et selon une fréquence d'échantillonnage de 100 Hz. Une base de données a ainsi été constituée rassemblant 3221 foulées de galop, collectées en ligne droite et en courbe et issues de 58 chevaux de sauts d'obstacles de niveaux et d'âges variés. Nous avons restreint notre travail à la prédiction de trois paramètres : la vitesse par foulée, la longueur de foulée et la qualité de saut. Pour répondre aux deux premiers objectifs nous avons développé une méthode de clustering fonctionnelle multivariée permettant de diviser notre base de données en sous-groupes plus homogènes du point de vue des signaux collectés. Cette méthode permet de caractériser chaque groupe par son profil moyen, facilitant leur compréhension et leur interprétation. Mais, contre toute attente, ce modèle de clustering n'a pas permis d'améliorer les résultats de prédiction de vitesse, les SVM restant le modèle ayant le pourcentage d'erreur inférieur à 0.6 m/s le plus faible. Il en est de même pour la longueur de foulée où une précision de 20 cm est atteinte grâce aux Support Vector Machine (SVM). Ces résultats peuvent s'expliquer par le fait que notre base de données est composée uniquement de 58 chevaux, ce qui est un nombre d'individus très faible pour du clustering. Nous avons ensuite étendu cette méthode au co-clustering de courbes fonctionnelles multivariées afin de faciliter la fouille des données collectées pour un même cheval au cours du temps. Cette méthode pourrait permettre de détecter et prévenir d'éventuels troubles locomoteurs, principale source d'arrêt du cheval de saut d'obstacle. Pour finir, nous avons investigué les liens entre qualité du saut et les signaux collectés par l'IMU. Nos premiers résultats montrent que les signaux collectés par la selle seuls ne suffisent pas à différencier finement la qualité du saut d'obstacle. Un apport d'information supplémentaire sera nécessaire, à l'aide d'autres capteurs complémentaires par exemple ou encore en étoffant la base de données de façon à avoir un panel de chevaux et de profils de sauts plus variés / With the growth of smart devices market to provide athletes and trainers a systematic, objective and reliable follow-up, more and more parameters are monitored for a same individual. An alternative to laboratory evaluation methods is the use of inertial sensors which allow following the performance without hindering it, without space limits and without tedious initialization procedures. Data collected by those sensors can be classified as multivariate functional data: some quantitative entities evolving along time and collected simultaneously for a same individual. The aim of this thesis is to find parameters for analysing the athlete horse locomotion thanks to a sensor put in the saddle. This connected device (inertial sensor, IMU) for equestrian sports allows the collection of acceleration and angular velocity along time in the three space directions and with a sampling frequency of 100 Hz. The database used for model development is made of 3221 canter strides from 58 ridden jumping horses of different age and level of competition. Two different protocols are used to collect data: one for straight path and one for curved path. We restricted our work to the prediction of three parameters: the speed per stride, the stride length and the jump quality. To meet the first to objectives, we developed a multivariate functional clustering method that allow the division of the database into smaller more homogeneous sub-groups from the collected signals point of view. This method allows the characterization of each group by it average profile, which ease the data understanding and interpretation. But surprisingly, this clustering model did not improve the results of speed prediction, Support Vector Machine (SVM) is the model with the lowest percentage of error above 0.6 m/s. The same applied for the stride length where an accuracy of 20 cm is reached thanks to SVM model. Those results can be explained by the fact that our database is build from 58 horses only, which is a quite low number of individuals for a clustering method. Then we extend this method to the co-clustering of multivariate functional data in order to ease the datamining of horses’ follow-up databases. This method might allow the detection and prevention of locomotor disturbances, main source of interruption of jumping horses. Lastly, we looked for correlation between jumping quality and signals collected by the IMU. First results show that signals collected by the saddle alone are not sufficient to differentiate finely the jumping quality. Additional information will be needed, for example using complementary sensors or by expanding the database to have a more diverse range of horses and jump profiles
|
46 |
Régression non-paramétrique pour variables fonctionnelles / Non parametric regression for functional dataElamine, Abdallah Bacar 23 March 2010 (has links)
Cette thèse se décompose en quatre parties auxquelles s'ajoute une présentation. Dans un premier temps, on expose les outils mathématiques essentiels à la compréhension des prochains chapitres. Dans un deuxième temps, on s'intéresse à la régression non paramétrique locale pour des données fonctionnelles appartenant à un espace de Hilbert. On propose, tout d'abord, un estimateur de l'opérateur de régression. La construction de cet estimateur est liée à la résolution d'un problème inverse linéaire. On établit des bornes de l'erreur quadratique moyenne (EQM) de l'estimateur de l'opérateur de régression en utilisant une décomposition classique. Cette EQM dépend de la fonction de petite boule de probabilité du régresseur au sujet de laquelle des hypothèses de type Gamma-variation sont posées. Dans le chapitre suivant, on reprend le travail élaboré dans le précédent chapitre en se plaçant dans le cadre de données fonctionnelles appartenant à un espace semi-normé. On établit des bornes de l'EQM de l'estimateur de l'opérateur de régression. Cette EQM peut être vue comme une fonction de la fonction de petite boule de probabilité. Dans le dernier chapitre, on s'intéresse à l'estimation de la fonction auxiliaire associée à la fonction de petite boule de probabilité. D'abord, on propose un estimateur de cette fonction auxiliare. Ensuite, on établit la convergence en moyenne quadratique et la normalité asymptotique de cet estimateur. Enfin, par des simulations, on étudie le comportement de de cet estimateur au voisinage de zéro. / This thesis is divided in four sections with an additionnal presentation. In the first section, We expose the essential mathematics skills for the comprehension of the next sections. In the second section, we adress the problem of local non parametric with functional inputs. First, we propose an estimator of the unknown regression function. The construction of this estimator is related to the resolution of a linear inverse problem. Using a classical method of decomposition, we establish a bound for the mean square error (MSE). This bound depends on the small ball probability of the regressor which is assumed to belong to the class of Gamma varying functions. In the third section, we take again the work done in the preceding section by being situated in the frame of data belonging to a semi-normed space with infinite dimension. We establish bound for the MSE of the regression operator. This MSE can be seen as a function of the small ball probability function. In the last section, we interest to the estimation of the auxiliary function. Then, we establish the convergence in mean square and the asymptotic normality of the estimator. At last, by simulations, we study the bahavour of this estimator in a neighborhood of zero.
|
47 |
Réduction de dimension en statistique et application en imagerie hyper-spectraleGirard, Robin 26 June 2008 (has links) (PDF)
Cette thèse est consacrée à l'analyse statistique de données en grande dimension. Nous nous intéressons à trois problèmes statistiques motivés par des applications médicales : la classification supervisée de courbes, la segmentation supervisée d'images hyperspectrales et la segmentation non-supervisée d'images hyperspectrales. Les procédures développées reposent pour la plupart sur la théorie des tests d'hypothèses (tests multiples, minimax, robustes et fonctionnels) et la théorie de l'apprentissage statistique. Ces théories sont introduites dans une première partie. Nous nous intéressons, dans la deuxième partie, à la classification supervisée de données gaussiennes en grande dimension. Nous proposons une procédure de classification qui repose sur une méthode de réduction de dimension et justifions cette procédure sur le plan pratique et théorique. Dans la troisième et dernière partie, nous étudions le problème de segmentation d'images hyper-spectrales. D'une part, nous proposons un algorithme de segmentation supervisée reposant à la fois sur une analyse multi-échelle, une estimation par maximum de vraisemblance pénalisée, et une procédure de réduction de dimension. Nous justifions cet algorithme par des résultats théoriques et des applications pratiques. D'autre part, nous proposons un algorithme de segmentation non supervisée impliquant une décomposition en ondelette des spectres observées en chaque pixel, un lissage spatial par croissance adaptative de régions et une extraction des frontières par une méthode de vote majoritaire.
|
48 |
Contribution à la statistique spatiale et l'analyse de données fonctionnelles / Contribution to spatial statistics and functional data analysisAhmed, Mohamed Salem 12 December 2017 (has links)
Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres inconnus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépendantes.La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales dépendantes).Tout d’abord, nous étudions des données à valeurs dans un espace de dimension infinie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les modèles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spécificité de cette étude réside sur le fait que la méthode proposée prend en considération le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance conditionnelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonctionnelle de la variable explicative et la structure de la dépendance spatiale des variables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité asymptotique et les performances numériques des estimateurs proposés.Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et prédiction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur et donnons des résultats numériques à l’aide de données simulées et environnementales.Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépendantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi paramétrique basée sur une vraisemblance pondérée et la méthode des moments généralisées et en étudions les propriétés asymptotiques et performances numériques. Une étude sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre contribution. / This thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country.
|
Page generated in 0.113 seconds