• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrode measurement on the net charge on muscle proteins

Bryson, Elzbieta Anna January 1997 (has links)
No description available.
2

RECOVERY OF METAL CATIONS FROM LIME SLUDGE USING DONNAN DIALYSIS

Wang, Qianheng 24 September 2009 (has links)
No description available.
3

Salt solubility measurements in partially disulfonated poly(arylene ether sulfone) for reverse osmosis water purification applications

Passaniti, Linda Kimberly 02 November 2010 (has links)
Partially disulfonated poly(arylene ether sulfone) (BPS) membranes have shown great promise as robust, chlorine tolerant alternatives to the current polyamide materials as reverse osmosis desalination membranes for water purification. The random copolymers are synthesized by direct polymerization of a disulfonated monomer (3,3’-disulfonato-4,4’-dichlorodiphenyl sulfone (SDCDPS)) and other monomers (4,4’-dichlorodiphenyl sulfone (DCDPS) and 4,4’-biphenol (BP)). The sulfonation of the materials adds necessary hydrophilic character and adjusting the percent sulfonation of the material changes the water and salt uptake of the material. Additionally, sulfonation causes the membranes to be charged, making them ion exchangers in which anions are partially excluded from the membrane, thus affecting the partitioning of salt in the membrane. The amount of sodium chloride present in the membrane after equilibration with external soaking solutions of varying concentrations of sodium chloride was measured by measuring the amount of individual ions, i.e., the sodium cation and chloride anion, separately. One area in which this work is unique is that it sought to measure the concentrations of the ions independently of one another. The analysis of sodium and chloride has shown the concentration of sodium in the membrane to be significantly greater than that of chloride, where the uptake of chloride is the limiting factor in the uptake of sodium chloride. The trends in the concentrations as well as in the partition coefficients of the ions are consistent with Donnan Exclusion. / text
4

Coagulant recovery from waterworks sludge

Keeley, James January 2014 (has links)
Coagulation is a ubiquitous process in the treatment of raw surface water for eventual potable use. Despite its capabilities, the sheer scale of its use is manifested in the volumes of chemicals it demands and waste sludge it produces. Recovering and reusing the chemical activity of the coagulant sludge in water treatment is a logical solution but this practice has been restricted by the presence of contaminants within the sludge. This thesis has investigated methods that can separate the coagulant metals from these primarily natural organic contaminants, with an aim of producing a sufficiently pure coagulant for effective treatment performance when reused. A process of ultrafiltration of the impure regenerated coagulant followed by a powdered activated carbon polishing stage compared favourably to a number of other separation processes and was found to remove the most dissolved organic compounds. When the purified coagulant was used to treat raw water, it provided better turbidity removal than commercial coagulant and matched its removal of trihalomethane precursors, making the process suitable for consideration at full-scale. Analysis of the whole life cost suggested that such performance could be reproduced at full-scale within a 25 year payback period. The reuse of even purified recovered coagulants in drinking water treatment still carries risks which may deter its implementation. Therefore the efficacy of recovered coagulants in the role of phosphorus removal from wastewater was also investigated. This showed that both acidified and unacidified waterworks sludges, with sufficient contact time, could remove similar levels of phosphorus as fresh coagulants, at approximately half the whole life cost.
5

Separation Of Arsenite And Arsenate Species From Water By Charged Ultrafiltration Membranes

Aysegul, Sezdi 01 June 2012 (has links) (PDF)
Arsenic is found in drinking waters in many countries and since maximum allowable concentration is as low as 10 &micro / g/L, there are many research efforts to separate it from water. Membrane methods are used more and more widely in separation operations in recent years. Arsenic is mainly present in water as arsenite [As(III)] and arsenate [As(V)]. As pH of water changes, molecular formulas of As(III) and As(V) change. In this study, the performance of different ultrafiltration membranes for arsenic removal from water was investigated at different pH values, different feed concentrations and presence of other anions (SO42-, HPO42-, NO3-, Cl-). Donnan exclusion effect on separation was discussed since distribution of arsenite and arsenate anions change in water due to change in pH of the solution. Experiments were conducted via batch and continuous modes. For continuous ultrafiltration experiments, 30 kDa of polysulfone and 20 kDa of polyether sulfone membranes were used. Batch ultrafiltration experiments were performed with the usage of 3 kDa of regenerated cellulose membrane. Higher retention values for As(V) were obtained compared to retention values of As(III). When membranes&rsquo / performances were investigated, it was seen that highest As(V) removal was observed with the usage of polysulfone membrane. Increase in feed concentration and presence of other anions caused decrement in separation. Hydride Generation Atomic Absorption Spectrometry was used to perform analyses. Hydride generator part was designed, constructed and optimized to obtain reliable and accurate absorbance values.
6

Concentration of Ammonium from Dilute Aqueous Solutions using Commercially Available Reverse Osmosis Membranes

Awobusuyi, Tolulope David January 2016 (has links)
Several commercially available reverse osmosis (RO) membranes were characterized with aqueous solutions of ammonium sulfate, potassium triphosphate, and mixtures of these two salts at different feed concentrations, compositions and pressures. The objective of this study was to investigate the rejection of these solutes, in particular the ammonium ion (NH4+), by different RO membranes. The aqueous solutions were assumed to come from an anaerobic digester via a process, currently under investigation by CHFour Biogas Inc., to maintain low concentrations of ammonia in the digester in order to maximize the biogas production. The ammonium ions present in the liquid produced from the process are then concentrated using membrane separation. The concentrated ammonium solution would be a valuable fertilizer that could be used by agriculture. The membranes were characterized with three models: the solution-diffusion model, the Kedem-Katchalsky model, also known as the irreversible thermodynamics model, and the Donnan Steric Pore Model (DSPM). The solution-diffusion and irreversible thermodynamics models were found to be inadequate for proper membrane characterization and the use of the DSPM model yielded membrane properties in good agreement with those found in already existing literature. The pore radius of investigated membranes ranged from 0.39 to 0.51 nm. The effect of pH on membrane surface charge was also studied, with the conclusion that increases in pH led to increasingly negative surface charges. This affected the transport of individual ions through the membrane due to preferential passage of the counter-ions. The effects of applied pressure on the stoichiometric nature of salt rejections were also studied. The minimal observed rejection from the range of experiments carried out using ammonium sulfate was 93%Non-stoichiometric rejections of ions were also observed in the experiments with single and multiple solutes. Furthermore, the rejection of ammonium ions in the presence of other ions (K+, SO42-, PO43-) increased as feed concentration increased, which was a result of the synergistic effects of feed pH and ionic interactions. The minimum NH4+ rejection in the presence of other ions was 95.4%, which suitability using RO membranes for concentration of ammonium from dilute aqueous solutions.
7

Relationship Between Inorganic Ion Distribution, Resting Membrane Potential, and the ΔG' of ATP Hydrolysis: a New Paradigm

Veech, Richard L., King, M. Todd, Pawlosky, Robert, Bradshaw, Patrick C., Curtis, William 01 December 2019 (has links)
Cell membrane potential and inorganic ion distributions are currently viewed from a kinetic electric paradigm, which ignores thermodynamics. The resting membrane potential is viewed as a diffusion potential. The 9 major inorganic ions found in blood plasma (Ca2+, Na+, Mg2+, K+, H+, Cl-, HCO3-, H2PO4-, and HPO42-) are distributed unequally across the plasma membrane. This unequal distribution requires the energy of ATP hydrolysis through the action of the Na+-K+ ATPase. The cell resting membrane potential in each of 3 different tissues with widely different resting membrane potentials has been shown to be equal to the Nernst equilibrium potential of the most permeant inorganic ion. The energy of the measured distribution of the 9 major inorganic ions between extra- and intracellular phases was essentially equal to the independently measured energy of ATP hydrolysis, showing that the distribution of these 9 major ions was in near-equilibrium with the ΔG' of ATP. Therefore, thermodynamics does appear to play an essential role in the determination of the cell resting membrane potential and the inorganic ion distribution across the plasma membrane.-Veech, R. L., King, M. T., Pawlosky, R., Bradshaw, P. C., Curtis, W. Relationship between inorganic ion distribution, resting membrane potential, and the ΔG' of ATP hydrolysis: a new paradigm.
8

Investigation of the Structure-Mechanical Relationship of the Porcine Thoracic Aorta with a Focus on Glycosaminoglycans and Residual Stress

Ghadie, Noor 14 September 2023 (has links)
The extracellular matrix (ECM) of the aorta is a complex meshwork of elastin, collagen, and glycosaminoglycans (GAG). It also modulates the mechanical properties of the aorta, which in turn dictate lethal ruptures such as those caused by aneurysm and dissection. Amongst other roles, aortic stiffness controls the aorta’s ability to expand and recoil, and residual stresses, which are those existing in the absence of load, affect the magnitude and distribution of the mechanical stresses throughout the aortic wall. Mechanical stresses can be predicted via complex computer models, powerful tools that can also provide insight regarding the risk of rupture, given that ruptures occur when the mechanical stresses exceed the strength of the aorta. While this dissertation is primarily focused on the effect of GAG on residual stresses, other ECM (collagen, elastin) and mechanical (stiffness) factors are considered to expand our understanding of the structure-mechanics relationship in the aorta. This is important because the ECM undergoes extensive remodelling during aging and disease, but it is also critically important, as mentioned, in the context of aortic rupture. We first explored the mechanical roles of GAG in a finite element model by studying both the transmural residual stresses and the opening angle (an indicator of circumferential residual stresses) in ascending (AS) aortic ring models. Both were shown to be modulated by the GAG content, gradient, and the nature of the transmural distribution. While a heterogeneous GAG distribution led to the development of residual stresses which could be released by a radial cut, this was not the case when a homogeneous distribution was prescribed. Because the GAG distributions used in the first study were based on assumptions, and to get an in vitro understanding of the ECM role in modulating residual stresses, biomechanical mechanisms were explored in thoracic aortas from 5- to 6-month-old pigs. In a second study, we generated new detailed data on the distributions of collagen, elastin and GAG, throughout the aortic wall in the AS, arch (AR), and descending thoracic (DT) regions, and established correlations between the ECM constituents and the opening angle. The strongest correlations were observed between the opening angle and the total collagen:GAG ratio as well as the total GAG content. In line with our first in silico work, this in vitro investigation revealed that the GAG content and gradient modulate circumferential residual stresses and suggested that the interaction between GAG and the ECM fibers also plays a role in regulating residual stresses. In a third study, we examined the extent of contribution of GAG to circumferential residual stresses and to the radial compressive stiffness of the aortic wall, as well as the underlying mechanism through which GAG contribute to the mechanical properties using enzymatic GAG depletion. GAG depletion was associated with a decrease in the opening angle, by approximately 25%, 32%, 42% in the AS, AR, and lower DT regions respectively, and an increase in the radial compressive stiffness of the AS aorta. Glycation was also associated with a decrease in the opening angle, in which GAG depletion also had a similar effect. A small loss of water content was detected after GAG depletion, and the AS region was also associated with a significant loss of compressive deformation in the inner layer of the aorta following GAG depletion, suggesting that GAG interact with ECM fibers in their effect on aortic mechanics. The garnered experimental geometrical data and intramural GAG distributions were finally used to simulate animal-specific aortic rings from the AS, AR, and DT regions. The opening angle response was evaluated in solid matrices assuming one layer, and two layers to capture the different mechanical behaviors of the intima-media and the adventitia. A Holmes-Mow constitutive relationship was used and material parameters were obtained by curve fitting experimental stress-strain curves obtained from biaxial tests. Numerical results were evaluated by comparing simulated and experimental opening angles, revealing a notable overall agreement between the two.
9

Quantifying diffusion in biofilms : from model hydrogels to living biofilms

Golmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion. For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect. The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.
10

Quantifying diffusion in biofilms : from model hydrogels to living biofilms

Golmohamadi, Mahmood 07 1900 (has links)
Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement. / Biofilms are primarily communities of microorganisms embedded in a complex exopolymer matrix. They are thought to play an important role as diffusive barriers in environmental systems and human health, resulting in increased resistance to disinfectants and antibiotics. Since mass transport in a biofilm is primarily due to molecular diffusion, it is critical to understand the main parameters influencing diffusive fluxes in a biofilm. In this thesis, a Pseudomonas fluorescens biofilm and two model hydrogels, (agarose and calcium alginate), were investigated. Both self-diffusion (Brownian motion) and mutual diffusion coefficients were quantified. Fluorescence correlation spectroscopy was used to measure the self-diffusion coefficients in a ca. 1 m3 confocal volume in the gels or biofilms, whereas a diffusion cell setup was employed for mutual diffusion measurements. In addition, microelectrode voltammetry was used to evaluate Donnan potential of the gels in order to determine its impact on diffusion. For the agarose hydrogel, the combined observations of a decreasing self-diffusion coefficient coupled with increasing mutual diffusion as a function of a decreasing ionic strength have been attributed to the gel’s Donnan potential. Measurements of the Donnan effect (difference of -30 mV between ionic strengths of 10-4 and 10-1 M) and the corresponding accumulation of ions in the hydrogel (13x enhancement with respect to the bulk solution) indicated that electrostatic interactions can strongly influence the diffusive flux of cations, even in a weakly charged hydrogel, such as agarose. Somewhat surprisingly, for a more highly charged gel such as calcium alginate, varying ionic strength and pH resulted in only small changes to the diffusion of charged probes in the hydrogel. These results suggested that the direct effect of the cations on gel structure (due to an induced swelling or compression) was much more effective than the Donnan effect when influencing solute diffusion. Similarly, for a bacterial biofilm, self-diffusion coefficients were virtually constant across a range of examined ionic strengths (10-4-10-1 M) for both negatively and positively charged small solutes (Db/Dw≈85%) and nanoparticles (Db/Dw≈50%), suggesting that the obstruction effect of the biofilms again overwhelmed the charge effect. The results of this work indicated that among the various major factors affecting diffusion in an oligotrophic environmental biofilm (steric exclusion, hydrophobic and electrostatic interactions), obstruction effects appeared to be the most important when attempting to understand the solute diffusion. While charge effects did not appear to be important to the self-diffusion of charged substrates in the alginate hydrogel or bacterial biofilm, they were key to understanding diffusion through another gel, with numerous biomedical and environmental applications, i.e. agarose. These results should be extremely useful when evaluating the bioavailability of the trace contaminants and nanoparticles in the environment.

Page generated in 0.0425 seconds