• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 46
  • 33
  • 32
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Can transcranial magnetic stimulation and music conjointly influence the mood of the healthy population? A psychophysiological approach

Roghani Zanjani, Samaneh 08 1900 (has links)
Mémoire de maîtrise présenté en vue de l'obtention de la maîtrise en psychologie (M. Sc) / L'humeur, en tant qu’élément central dans notre perception du monde, englobe diverses émotions et affecte grandement le bien-être mental et physiologique. Une régulation efficace de l'humeur est vitale pour un fonctionnement quotidien normal et tout dérèglement peut mener à des troubles psychologiques majeurs comme la dépression. Au niveau cérébral, le système de récompense, en particulier le cortex préfrontal dorsolatéral gauche (CPFdl) et ses projections dopaminergiques, joue un rôle central dans la régulation de l'humeur et du plaisir. De nombreuses recherches montrent maintenant que l’écoute de la musique influence notre humeur, en agissant sur le système de récompense. En outre, la stimulation magnétique transcrânienne répétitive excitatrice (SMTr) ciblant le CPFdl gauche a donné des résultats prometteurs en modifiant l'humeur et l'activité du système de récompense, ainsi qu'en modulant le plaisir perçu et la motivation pendant l'écoute de la musique en augmentant l'excitabilité et la plasticité corticales. Cependant, les études existantes sur l'impact de la SMTr sur l'humeur des personnes en bonne santé aboutissent à des résultats contradictoires, et l'effet conjoint de la SMTr et de la musique sur l'humeur reste inexploré. Cette étude vise donc à déterminer si la SMTr excitatrice peut augmenter les effets de la musique sur l'humeur chez des volontaires sains. Plus précisément, nous souhaitons valider l'impact de la musique, de la SMTr et de leur application combinée sur l'humeur des participants. Vingt-quatre participants ont suivi quatre sessions expérimentales, comprenant soit la SMTr seule, l’écoute de la musique seule, la SMTr associée à l’écoute de la musique, ou les conditions placebo/sham. L'humeur des participants a été évaluée à l'aide d'un questionnaire sur l'humeur et d'enregistrements de l'activité électrodermale (EDA) avant et après les stimuli. Les résultats ont révélé une amélioration significative de l'humeur générale et de l'humeur positive, ainsi qu'une diminution significative de l'humeur négative au cours de la séance de musique seule, ce qui indique l'efficacité de la musique en tant qu'intervention pour améliorer l'humeur. À l'inverse, la séance de SMTr seule a entraîné une diminution de l'humeur positive et une augmentation de l'humeur négative, ce qui suggère un effet négatif potentiel de la SMTr sur l'humeur. . Dans la session SMTr + musique, on a observé une tendance à l'amélioration de l'humeur, ce que nous interprétons comme le fait que l'application de la SMTr sur le CPFdl gauche a entrainé une baisse de l'humeur, tandis que l'écoute de la musique contrecarrait cet effet en induisant une humeur positive et en réduisant l'humeur négative.En conclusion, les résultats de cette étude soulignent le potentiel de la musique en tant qu'intervention visant à améliorer l'humeur. En outre, les résultats suggèrent que la SMTr excitatrice ciblant le CPFdl gauche peut entraîner une baisse de l'humeur. Il est nécessaire de poursuivre les recherches dans ce domaine, notamment en explorant d'autres combinaisons de stimuli, telles que la SMTr excitatrice sur le CPFdl droit associée à la musique, afin de mieux comprendre les mécanismes sous-jacents et d'optimiser l'utilisation de ces interventions pour la régulation de l'humeur. Ces recherches supplémentaires permettront de mieux comprendre la modulation de l'humeur et d'améliorer l'efficacité des interventions dans ce domaine. / Mood, as a central element in our perception of the world, encompasses a variety of emotions and greatly affects mental and physiological well-being. Effective mood regulation is vital for normal daily functioning, and any disruption can lead to major psychological disorders such as depression. At the cerebral level, the reward system, in particular, the left dorsolateral prefrontal cortex (DLPFC) and its dopaminergic projections, plays a central role in regulating mood and pleasure. A large body of research now shows that listening to music influences our mood, by affecting the reward system. In addition, excitatory repetitive transcranial magnetic stimulation (rTMS) targeting the left DLPFC has shown promising results in altering mood and the reward system activity, as well as modulating perceived pleasure and motivation during music listening by increasing cortical excitability and plasticity. However, existing studies on the impact of rTMS on mood in healthy individuals yield conflicting results, and the joint effect of rTMS and music on mood remains unexplored. This study aims to determine whether excitatory rTMS can enhance the effects of music on mood in healthy volunteers. More specifically, we aim to validate the impact of music, rTMS, and their combined application on participants' mood. Twenty-four participants completed four experimental sessions, comprising either rTMS alone, listening to music alone, rTMS + music, or placebo/sham conditions. Participants' mood was assessed using a mood questionnaire and electrodermal activity (EDA) recordings before and after the stimuli. Results revealed a significant improvement in overall mood and positive mood, as well as a significant decrease in negative mood during the music-only session, indicating the effectiveness of music as a mood-enhancing intervention. Conversely, the rTMS session alone resulted in a decrease in positive mood and an increase in negative mood, suggesting a potential negative effect of rTMS on mood. In rTMS + music session, there was a trend in mood improvement, which we interpret as meaning that applying rTMS to the left DLPFC resulted in a decrease in the mood while listening to music counteracted this effect by inducing positive mood and reducing negative mood. In conclusion, the results of this study underline the potential of music as a mood-enhancing intervention. In addition, the results suggest that excitatory rTMS targeting the left DLPFC may lead to a decrease in mood. Further research in this area is necessary, including exploring alternative combinations of stimuli, such as excitatory rTMS on the right DLPFC in conjunction with music to better understand the underlying mechanisms and optimize the use of these interventions for mood regulation. This additional research will contribute to a more comprehensive understanding of mood modulation and enhance the effectiveness of interventions in this field.
32

Investigation of LTP-like Plasticity, Memory and Prefrontal Cortical Thickness: a TMS-EEG and Brain Imaging Study

Drodge, Jessica 04 January 2023 (has links)
Introduction: Memory is a complex cognitive process formerly linked to mechanisms of brain plasticity that can be estimated in the left dorsolateral prefrontal cortex (DLPFC) using transcranial magnetic stimulation and electroencephalography (TMS-EEG). Also, cortical thickness in the DLPFC may be a potential proxy measure of brain plasticity as previous literature reports a link between better memory and thicker cortex. However, the link between brain plasticity and memory performance as well as DLPFC thickness remains to be clarified. Methods: Intermittent theta burst stimulation (iTBS) probed plasticity-like mechanisms in the left DLPFC in 17 cognitively healthy participants. TMS-EEG recordings were performed before and after sham and active iTBS to quantify plasticity via transcranial magnetic stimulation-evoked potentials (TEPs). Composite memory scores for each domain (verbal episodic, visual episodic and working memory) were obtained using the Cambridge Neuropsychological Test Automated Battery. Anatomical T1 images were acquired by magnetic resonance imaging and processed by open-source software (CIVET) and the Automated Anatomical Labeling atlas to extract cortical thickness of the DLPFC. All statistical analyses (linear mixed model, Tukey's post hoc test and Pearson's correlations) were completed in R Studio. Results: iTBS resulted in increased TEP amplitude P30 (F= 5.239, p = 0.029), as shown by a significant interaction between condition (iTBS, sham) and time (pre- and post-condition). Specifically, Tukey's post hoc test revealed that the P30 increase was near trending significant post-iTBS compared to pre-iTBS for the active condition (p = 0.166) but not for the sham condition (p = 0.294). A trending significant relationship was observed between the magnitude of P30 change post-iTBS and thicker left DLPFC (r = 0.488; p = 0.108). Lastly, no significant relationships between P30 change and memory performance were observed. Conclusion: These preliminary findings suggest there could be a relationship between increased capacity for brain plasticity and a thicker left DLPFC. To further investigate these relationships, we plan to recruit additional cognitively healthy participants. Our preliminary findings support the foundation for future clinical studies in which DLPFC thickness could be explored as a predictive factor for response to plasticity-targeting iTBS treatment.
33

Estudo preliminar sobre o impacto da estimulação transcraniana por corrente contínua em tarefa de multiplicação

Picinini, Rita dos Santos de Carvalho 27 January 2009 (has links)
Made available in DSpace on 2016-03-15T19:40:41Z (GMT). No. of bitstreams: 1 Rita dos Santos de Carvalho Picinini.pdf: 1897105 bytes, checksum: 40db215aab8bca0781df1d15de88b3d3 (MD5) Previous issue date: 2009-01-27 / Fundo Mackenzie de Pesquisa / Different mathematical skills have been investigated over time and, with the advance of neuroimaging techniques, such as PET (Positron Emission Tomography) and fMRI (functional Magnetic Resonance), central components of arithmetical processing have been identified in the parietal and the pre-frontal cortices. Besides the advances of the neuroimaging techniques, other techniques such as non-invasive brain modulation have also been studied such as the transcranial magnetic stimulation (TMS) and the transcranial direct current stimulation (TDCS) in the involvement of cognitive functions in the area of calculation. This study aimed at investigating the impact of anodal TDCS applied over the left dorsolateral pre-frontal cortex (LDLPFC), right parietal cortex (RPC), left parietal cortex (LPC) while the subject was performing multiplication operations. Fifteen healthy volunteers, students of psychology, aged between 18 and 30 years old, have held subtests of the WAIS III and the multiplication task. The results showed that the anodal TDCS over the RPC improved the performance of men regarding the number of rightness. The influence of TDCS on volunteers who had worse performance took place not on complex tasks, but simple arithmetical ones. Besides, the influence of TDCS on volunteers who had better performance was in complex tasks, not simple ones. These results show that the effects of the TDCS on a certain function depend on the baseline values of each volunteer. The other stimulation conditions over the LDLPFC and LPC did not show any significant results. The TDCS can bring a beneficial effect in calculation tasks, depending on the intensity, polarity, time and location of stimulation, resulting in the increased or diminished cortex excitability. / Diferentes habilidades matemáticas vêm sendo investigadas ao longo dos tempos e, com o avanço das técnicas de neuroimagem, como PET (Tomografia por emissão de Pósitrons) e fMRI (ressonância magnética funcional) componentes centrais no processamento aritmético vêm sendo identificados em córtex parietal e pré-frontal. Além do avanço das técnicas de neuroimagem, outras técnicas como de modulação cerebral não-invasiva também vêm sendo estudadas, como Estimulação Magnética Transcraniana (EMT) e a Estimulação Transcraniana por Corrente Contínua (ETCC) no envolvimento das funções cognitivas com a área de cálculo. Este estudo teve como objetivo investigar o impacto da ETCC anódica quando aplicada no Córtex Pré-Frontal Dorsolateral (CPFDLE), Córtex Parietal Direito (CPD), Córtex Parietal Esquerdo (CPE) no desempenho em operações de multiplicação. Quinze voluntários saudáveis, estudantes de psicologia, com faixa etária entre 18 e 30 anos, realizaram subtestes do WAIS III e a tarefa de multiplicação. Os resultados desse estudo mostraram que a ETCC anódica aplicada no CPD melhorou o desempenho dos homens em relação ao número de acertos. A influência da ETCC em participantes com pior desempenho em Aritmética se deu em tarefa simples de multiplicação, mas não complexa, ao passo que a influência da ETCC em participantes com melhor desempenho em Aritmética se deu em tarefa complexa de multiplicação, mas não em simples. Tais resultados sinalizam que os efeitos da estimulação em uma determinada função dependem dos valores de linha de base de cada participante As outras condições de estimulações, CPFDLE e CPE não resultaram em efeitos significativos. A ETCC pode produzir um efeito benéfico em tarefas de cálculo, dependendo da intensidade, polaridade, tempo e localização da estimulação, podendo resultar em aumento ou diminuição na excitabilidade do córtex.
34

Modulation de l'apprentissage visuel par stimulation électrique transcrânienne à courant direct du cortex préfrontal

Lafontaine, Marc Philippe 08 1900 (has links)
Le traitement visuel répété d’un visage inconnu entraîne une suppression de l’activité neuronale dans les régions préférentielles aux visages du cortex occipito-temporal. Cette «suppression neuronale» (SN) est un mécanisme primitif hautement impliqué dans l’apprentissage de visages, pouvant être détecté par une réduction de l’amplitude de la composante N170, un potentiel relié à l’événement (PRE), au-dessus du cortex occipito-temporal. Le cortex préfrontal dorsolatéral (CPDL) influence le traitement et l’encodage visuel, mais sa contribution à la SN de la N170 demeure inconnue. Nous avons utilisé la stimulation électrique transcrânienne à courant direct (SETCD) pour moduler l’excitabilité corticale du CPDL de 14 adultes sains lors de l’apprentissage de visages inconnus. Trois conditions de stimulation étaient utilisées: inhibition à droite, excitation à droite et placebo. Pendant l’apprentissage, l’EEG était enregistré afin d’évaluer la SN de la P100, la N170 et la P300. Trois jours suivant l’apprentissage, une tâche de reconnaissance était administrée où les performances en pourcentage de bonnes réponses et temps de réaction (TR) étaient enregistrées. Les résultats indiquent que la condition d’excitation à droite a facilité la SN de la N170 et a augmentée l’amplitude de la P300, entraînant une reconnaissance des visages plus rapide à long-terme. À l’inverse, la condition d’inhibition à droite a causé une augmentation de l’amplitude de la N170 et des TR plus lents, sans affecter la P300. Ces résultats sont les premiers à démontrer que la modulation d’excitabilité du CPDL puisse influencer l’encodage visuel de visages inconnus, soulignant l’importance du CPDL dans les mécanismes d’apprentissage de base. / Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS) is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP). The dorsolateral prefrontal cortex (DLPFC) exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT) and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ~72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. P300 was analyzed to detect prefrontal function modulation. Recognition tasks were administered ~72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P300 amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused increases in N170 amplitudes and RT, but did not affect P300. These data are the first to demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.
35

Vergleichende MR-volumetrische Untersuchung des dorsolateralen präfrontalen Kortex bei Schizophrenie, Bipolarer Störung, Zwangserkrankung und gesunden Kontrollpersonen / Comparative MR volumetric analysis of the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, obsessive compulsive disorder and healthy controls

Kremer, Kristina 11 April 2011 (has links)
No description available.
36

Einfluss der transkraniellen Gleichstromstimulation auf die stimmungsabhängige Informationsverarbeitung bei gesunden Probanden / Effect of transcranial direct current stimulation on emotional processing in healthy humans

Pohlers, Henriette 09 January 2012 (has links)
No description available.
37

Modulation de l'apprentissage visuel par stimulation électrique transcrânienne à courant direct du cortex préfrontal

Lafontaine, Marc Philippe 08 1900 (has links)
Le traitement visuel répété d’un visage inconnu entraîne une suppression de l’activité neuronale dans les régions préférentielles aux visages du cortex occipito-temporal. Cette «suppression neuronale» (SN) est un mécanisme primitif hautement impliqué dans l’apprentissage de visages, pouvant être détecté par une réduction de l’amplitude de la composante N170, un potentiel relié à l’événement (PRE), au-dessus du cortex occipito-temporal. Le cortex préfrontal dorsolatéral (CPDL) influence le traitement et l’encodage visuel, mais sa contribution à la SN de la N170 demeure inconnue. Nous avons utilisé la stimulation électrique transcrânienne à courant direct (SETCD) pour moduler l’excitabilité corticale du CPDL de 14 adultes sains lors de l’apprentissage de visages inconnus. Trois conditions de stimulation étaient utilisées: inhibition à droite, excitation à droite et placebo. Pendant l’apprentissage, l’EEG était enregistré afin d’évaluer la SN de la P100, la N170 et la P300. Trois jours suivant l’apprentissage, une tâche de reconnaissance était administrée où les performances en pourcentage de bonnes réponses et temps de réaction (TR) étaient enregistrées. Les résultats indiquent que la condition d’excitation à droite a facilité la SN de la N170 et a augmentée l’amplitude de la P300, entraînant une reconnaissance des visages plus rapide à long-terme. À l’inverse, la condition d’inhibition à droite a causé une augmentation de l’amplitude de la N170 et des TR plus lents, sans affecter la P300. Ces résultats sont les premiers à démontrer que la modulation d’excitabilité du CPDL puisse influencer l’encodage visuel de visages inconnus, soulignant l’importance du CPDL dans les mécanismes d’apprentissage de base. / Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS) is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP). The dorsolateral prefrontal cortex (DLPFC) exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT) and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ~72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. P300 was analyzed to detect prefrontal function modulation. Recognition tasks were administered ~72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P300 amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused increases in N170 amplitudes and RT, but did not affect P300. These data are the first to demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.
38

Évaluation systématique des effets de la tDCS sur le DLPFC et applications en technologies de l'information

Dumont, Laurence 08 1900 (has links)
No description available.
39

Études électrophysiologiques sur l'apprentissage visuel : apport de mesures de complexité et de suppression du signal

Lafontaine, Marc Philippe 04 1900 (has links)
La recherche des dernières décennies nous a offert une compréhension détaillée des processus par lesquels les aires visuelles du cerveau reconstituent les signaux physiques de l’environnement pour en générer des représentations. Cependant, la proposition selon laquelle la perception serait également le produit d’inférences et attentes, qui nous permettraient d’interpréter plus exactement les informations entrantes à l’aide d’expériences passées, est récurrente dans l’histoire des neurosciences cognitives. Le predictive coding (PC), qui est actuellement un modèle influent de la perception, propose qu’un des rôles principaux du cerveau est de prédire les informations entrantes. L’apprentissage visuel serait ainsi orienté en fonction d’informations n’ayant pas été correctement prédites ou d’erreurs de prédiction. Le PC est associé depuis quelques années par le phénomène de suppression neuronale (SN), où la réduction graduelle de l’activité cérébrale associée au traitement répété d’un stimulus, représenterait la réduction des erreurs de prédiction. Cette thèse propose premièrement que bien que la SN puisse être le reflet d’un processus assimilable au PC, celle-ci ne le représente possiblement qu’en partie. Une mesure additionnelle reflétant la correction ou l’ajustement des prédictions déclenché par l’erreur de prédiction serait alors nécessaire. Dans un premier temps, une revue critique des principaux courants de la recherche sur l’apprentissage est présentée sous la forme d’un chapitre de livre du domaine plus large du développement des capacités d’apprentissage. Celle-ci permet de préciser les aspects fondamentaux de l’habituation, la SN et la capacité à associer des éléments en mémoire, ainsi que l’importance de caractériser ces phénomènes aussi pleinement que possible par l’utilisation de nouvelles mesures, ce qui motive les études expérimentales présentées subséquemment. Par la suite, une première étude visant à identifier une mesure complémentaire à celle de la SN reflétant un processus d’ajustement de prédictions est présentée. Cette mesure, nommée entropie multi-échelles (EME), offre une estimation de la quantité d’information d’un signal électroencéphalographique (EEG) et de la capacité de traitement des réseaux neuronaux sous-jacents. La première hypothèse de cette étude était donc que la SN serait accompagnée d’une augmentation de l’EME au-dessus de la région occipito-temporale lors d’un apprentissage de visages. Puisque les phénomènes reflétés par la SN et l’EME s’appuieraient sur la contribution de régions distantes dont le cortex préfrontal dorsolatéral, la deuxième hypothèse était que ces mesures seraient altérées par une modulation exogène de l’activité de cette région préfrontale par stimulation électrique transcrânienne à courant direct (SETCD). Les résultats ont montré que le signal EEG présentait à la fois une SN et une augmentation de l’EME avec l’apprentissage. De plus, la modulation préfrontale par SETCD a entraîné des variations de l’EME de la région occipito-temporale, sans toutefois avoir un impact sur la mesure de SN. La première étude suggère ainsi que la SN et l’EME reflètent des mécanismes cérébraux impliqués dans l’apprentissage visuel et compatibles au modèle de PC. Dans la deuxième étude, l’hypothèse d’une association entre les mesures de SN et d’EME a été reprise, cette fois dans le contexte d’un apprentissage visuel relationnel, étant donné le potentiel que représente les connaissances d’associations passées entre items pour la génération de prédictions. Dans ce contexte, des effets de SN et d’augmentation d’EME ont été obtenus à nouveau et étaient associées à la réussite de l’encodage d’associations de visages-paysages. Un deuxième aspect de cette étude visait à investiguer la présence d’effets semblables chez de jeunes enfants sains, étant donné plusieurs études suggérant que le PC et la mémoire relationnelle soient fonctionnels dans la première année de vie. Cependant, étant donné l’absence d’effets dans ce groupe, les résultats de la deuxième étude suggèrent que la présence du PC tôt dans le développement s’appuie possiblement sur d’autres ressources que la mémoire relationnelle. Les études de cette thèse sont une première démonstration du potentiel que représentent les mesures de SN et d’EME dans la compréhension des mécanismes qui sous-tendent la perception et l’apprentissage visuel. / Research over the last decades has offered detailed knowledge of the processes by which visual areas use physical signals from the environment to represent it accurately. However, the proposition that perception also relies on inferences and predictions based on past experience to allow more efficiency in the interpretation of incoming signals has been recurrent throughout the history of cognitive neuroscience. In recent years, the predictive coding (PC) model, which proposes that the brain acts as a predictor of incoming information, has been influential in this field. Learning is therefore driven by prediction error and encoding is essentially restricted to unpredicted inputs, thus allowing adjustments to predictions. PC has been associated with repetition suppression (RS), whereby the gradual reduction in brain responses associated with the repeated processing of a stimulus is thought to represent prediction error reduction. This thesis proposes that although RS may be attributable to a PC process, it may not represent it fully. To do so would necessitate the use of an additional measure reflecting prediction adjustments carried out as a consequence of prediction error. A critical review of the principal currents in the cerebral mechanisms underlying learning is presented first. This review underlines the fundamental aspects of habituation, RS and the ability to associate elements to one another in memory and the importance of characterizing these phenomena fully using new measures of learning, which motivates the experimental studies presented next. Then, a study aimed at identifying a measure complementary to RS and reflecting a prediction adjustment process is presented. This measure, named multiscale entropy (MSE), offers an estimation of the information content of an electroencephalogram (EEG), and of the underlying neural networks. The first study’s main hypothesis was that RS would be accompanied with an increase in MSE over occipito-temporal areas during learning of faces. As the processes reflected by these measures would rely on distal contributions including the dorsolateral prefrontal cortex (DLPFC), the second hypothesis was that exogenous modulation of this region using transcranial direct current stimulation (tDCS) would alter RS and MSE effects found over occipito-temporal cortex. As predicted by hypotheses, EEG signal showed both RS and MSE increase from the first presentation of a face to the second over occipito-temporal sites. Additionally, prefrontal tDCS modulated brain signal complexity over right occipito-temporal cortex during learning, but did not influence RS over the same region. The first study therefore suggests that RS and MSE reflect mechanisms involved in learning of visual stimuli that appear compatible with the PC account of perception and learning. In the second study the hypothesis of an association between RS and MSE increase was investigated again, this time in the context of a visual relational memory task, given the high potential past associations of items represent for prediction generation. In this context, RS and MSE increase effects were replicated in study trials leading to correct associations of face-landscape pairings. The second study also investigated the presence of similar effects in a sample of young healthy children, given that recent studies have found evidence of both PC mechanisms and relational memory ability emerging in the first year of life. However, given the lack of effects in this sample of participants, we suggest that while PC mechanisms may emerge early, relational memory may contribute later in the course of development. Together, the studies presented in this thesis represent the first demonstration of the potential the combined use of measures of RS and signal complexity represent in further understanding the cerebral underpinnings of visual perception and learning.
40

Inferência do tempo de atividade neural a partir do efeito BOLD em ressonância magnética funcional / Inference of neural activity time from BOLD effect in functional magnetic resonance imaging

Biazoli Junior, Claudinei Eduardo 01 April 2011 (has links)
A inferência do curso temporal da atividade neural a partir do efeito BOLD é um importante problema, ainda em aberto. A forma da curva BOLD não reflete diretamente as características temporais da atividade eletrofisiológica dos neurônios. Nessa tese, é introduzido o conceito de tempo de processamento neural (TPN) como um dos parâmetros do modelo biofísico da função de resposta hemodinâmica (HRF). O objetivo da introdução desse conceito é obter estimativas mais acuradas da duração da atividade neural a partir do efeito BOLD, que possui auto grau de nãolinearidade. Duas formas de estimar os parâmetros do modelo do efeito BOLD foram desenvolvidas. A validade e aplicabilidade do conceito de TPN e das rotinas de estimação foram avaliadas por simulações computacionais e análise de séries temporais experimentais. Os resultados das simulações e da aplicação foram comparados com medidas da forma da HRF. O experimento analisado consistiu em um paradigma de tomada de decisão na presença de distratores emocionais. Esperase que o TPN em áreas sensoriais primárias seja equivalente ao tempo de apresentação de estímulos. Por outro lado, o TPN em áreas relacionadas com a tomada de decisão deve ser menor que a duração dos estímulos. Além disso, o TPN deve depender da condição experimental em áreas relacionadas ao controle de distratores emocionais. Como predito, o valores estimados do TPN no giro fusiforme foram equivalentes à duração dos estímulos e o TPN no giro do cíngulo dorsal variou com a presença de distrator emocional. Observou-se ainda lateralidade do TPN no córtex pré-frontal dorsolateral. As medidas da forma da HRF obtidas por um método convencional não dectectaram as variações observadas no TPN / The extraction of information about neural activity dynamics related to the BOLD signal is a challenging task. The temporal evolution of the BOLD signal does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. We describe two routines to estimate the parameters of the HRF model. The face validity and applicability of the concept of NPT and the estimation procedures are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. We analysed an experiment based on a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas is approximately the stimulus presentation duration. On the other hand, the NPT in brain areas related to decisionmaking processes should be less than the stimulus duration. Moreover, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the estimated NPTs in the dorsolateral prefrontal cortex indicate functional laterality of this region. The analysis using standard measures of HRF did not detect the variations observed in our method (NPT)

Page generated in 0.0558 seconds