• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epigenetická regulace genů HLA II. třídy a její modifikace během života / Epigenetic regulation of HLA class II genes and its modification during the lifetime

Lamborová, Věra January 2013 (has links)
Background: The major histocompatibility complex (MHC) molecules play an important role in the immune response regulation and in the maintenance of the immune homeostasis. Regulation of their expression is therefore a key factor influencing the adaptive immune response. DNA methylation of gene regulatory regions is one of the mechanisms of gene expression control that affects the accessibility of DNA to transcription factors. Ageing is connected with changes in DNA methylation and increased predisposition to autoimmune diseases in older age could be associated with changes in MHC class II genes methylation. Aims: The aim of this diploma thesis is to analyze the methylation profile of DQA1 and DQB1 genes regulatory regions and to compare its differences between the generations and between individual alleles. The next aim is to compare DQA1 mRNA expression between the generations and between single alleles. Methods: DNA and RNA were isolated from blood of three age group donors. DNA was converted by the bisulfite treatment and regulatory regions of HLA class II genes were amplified and cloned into bacteria. Positive clones were sequenced and then analyzed. RNA was reverse transcribed and its expression level was determined by real-time PCR. Results: Statistically significant differences were found by...
2

Studium epigenetické regulace HLA genů II. třídy na úrovni histonových modifikací / The study of epigenetic regulation of HLA class II genes at the level of histone modification

Černoch, Marek January 2014 (has links)
Introduction: The epigenetic modifications can significantly affect and alter the gene activity by regulating their expression, having direct impact on various processes in human body. Epigenetic processes are involved in ethiopathogenesis of many diseases. From this point of view, MHC genes are very important as they were linked to many autoimmune disorders, for example type 1 diabetes mellitus. In general autoimmune diseases appear to be connected to certain MHC class II genes. Aims: The aim of this thesis is to determine the relationship between expression levels and histone modifications present in the promoter area of MHC class II gene, DQA1. Moreover, we also analyze and compare the DQA1 gene mRNA expression depending on the QAP promoter allele. Methods: We isolated both nucleic acids (DNA and RNA) and leukocytes from peripheral blood samples collected from voluntary donors. DNA was utilized for genotypization of individuals. RNA was subjected to reverse transcription and the quantitative PCR was performed in order to determine the level of expression. Leukocytes were used for chromatin immunoprecipitation, which was evaluated using quantitative PCR. Results: The expression level of QAP allele 3.1 was found to be higher than for the rest of the alleles Allele 4.1A showed, on the other hand,...
3

Epigenetická regulace genů HLA II. třídy a jejich role u autoimunitních onemocnění. / Epigenetic regulation of HLA class II genes and their role in autoimmune diseases.

Čepek, Pavel January 2012 (has links)
Abstract Background: Type 1 diabetes (T1D) is a multifactorial autoimmune disease. Its incidence in Europe is continuously rising. The highest T1D risk is associated with HLA (human leukocyte antigen) class II genes. HLA class II molecules play a key role in regulation of immune response. They contribute to the selection of T cell repertoire by presenting antigenic peptides to the CD4+ T lymphocytes. HLA class II expression is controlled by regulatory module that is situated 150 - 300 base pairs upstream of the transcription- initiation site in all HLA class II genes. Polymorphisms in this region are linked to some autoimmune diseases. There were identified several promoter alleles (named QAP) in the HLA DQA1 gene promoter region. Most of the polymorphisms appear to be conserved within haplotype. Individual QAP alleles may have a different promoter strength by which they influence expression of HLA DQA1 gene alleles. Promoter strength can be modulated by DNA methylation. Aims:Our aim was to define methylation profile of HLA DQA1 promoters and determine the mRNA expression of individual alleles of HLA DQA1 gene in T1D patients. The mRNA expression level of HLA DQA1 gene alleles was determined using quantitative PCR. Methods: 30 diabetic pacients (age range 21 to 76 years), were included in this pilot...
4

Studium epigenetických regulací HLA genů II. třídy v rámci příbuzenských vztahů. / The study of epigenetic regulation of gene HLA II. Clas within family relationships

Chmel, Martin January 2015 (has links)
Introduction: At our post-genomic era the studies of epigenetic regulation constitutes one of the tools for understanding the function of genes. Epigenetic regulation can directly control the temporal and spatial gene activity or silencing. The molecular basis of these regulations are DNA bases modifications, chromatin remodeling and RNA interference. At the same time, these mechanisms have a special way of transferring genetic information to subsequent generations called epigenetic inheritance. It has been proven epigenetic deregulation of certain genes as cause for many disease. For this reason, the study of epigenome HLA genes seems particularly important because these genes play a fundamental role in regulating the immune system. Aims: The aim of this work is to create a description of epigenetic modifications within families. It is an analysis of histone modifications and DNA methylation in the promoter region of the gene HLA DQA1. The aim was also to compare the differences in epigenetic modifications between alleles and compared the differences in these modifications between generations. The results will be compared with the analysis of the level of expression of the gene HLA DQA1. Methods: From collected peripheral blood of donors were isolated DNA, RNA, and leukocytes. DNA was used for...

Page generated in 0.0333 seconds