• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Research on efficient driving method of heavy hydraulic excavator boom

Xia, Lianpeng, Quan, Long, Ge, Lei, Hao, Yunxiao, Zhao, Bin, Li, Bin 25 June 2020 (has links)
There is a lot of gravitational potential energy waste when hydraulic excavators work, which seriously affects the efficiency of the whole machine and produces a large amount of emissions. In order to reduce the energy consumption and emissions of large hydraulic excavators which the boom is driven by two hydraulic cylinders, an integrated drive and potential energy recuperation principle is proposed. In the implementation, the original two-chamber hydraulic cylinders are replaced by three-chamber hydraulic cylinders with energy storage chambers, and the energy storage chambers are directly connected with the hydraulic accumulator. The dead weight of the working device is balanced by the initial hydraulic pressure of the hydraulic accumulator, and the gravitational potential energy is directly recuperated. A digital prototype is established for the simulation work to verify the energy-saving effect. Then a test prototype is constructed according to the simulation work. The standard 90° loading duty cycle tests show that compared with the standard hydraulic excavators of the same type, in the case of meeting the same digging force, the working efficiency of the excavator increases by 20.7% and the fuel consumption decreases by 17.1%. In terms of 8 hours of work per day, a single excavator can save fuel up to 47 L per day and reduce carbon dioxide emissions by 123.6 kg.

Page generated in 0.0378 seconds