• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Duplicate detection of multimodal and domain-specific trouble reports when having few samples : An evaluation of models using natural language processing, machine learning, and Siamese networks pre-trained on automatically labeled data / Dublettdetektering av multimodala och domänspecifika buggrapporter med få träningsexempel : En utvärdering av modeller med naturlig språkbehandling, maskininlärning, och siamesiska nätverk förtränade på automatiskt märkt data

Karlstrand, Viktor January 2022 (has links)
Trouble and bug reports are essential in software maintenance and for identifying faults—a challenging and time-consuming task. In cases when the fault and reports are similar or identical to previous and already resolved ones, the effort can be reduced significantly making the prospect of automatically detecting duplicates very compelling. In this work, common methods and techniques in the literature are evaluated and compared on domain-specific and multimodal trouble reports from Ericsson software. The number of samples is few, which is a case not so well-studied in the area. On this basis, both traditional and more recent techniques based on deep learning are considered with the goal of accurately detecting duplicates. Firstly, the more traditional approach based on natural language processing and machine learning is evaluated using different vectorization techniques and similarity measures adapted and customized to the domain-specific trouble reports. The multimodality and many fields of the trouble reports call for a wide range of techniques, including term frequency-inverse document frequency, BM25, and latent semantic analysis. A pipeline processing each data field of the trouble reports independently and automatically weighing the importance of each data field is proposed. The best performing model achieves a recall rate of 89% for a duplicate candidate list size of 10. Further, obtaining knowledge on which types of data are most important for duplicate detection is explored through what is known as Shapley values. Results indicate that utilizing all types of data indeed improve performance, and that date and code parameters are strong indicators. Secondly, a Siamese network based on Transformer-encoders is evaluated on data fields believed to have some underlying representation of the semantic meaning or sequentially important information, which a deep model can capture. To alleviate the issues when having few samples, pre-training through automatic data labeling is studied. Results show an increase in performance compared to not pre-training the Siamese network. However, compared to the more traditional model it performs on par, indicating that traditional models may perform equally well when having few samples besides also being simpler, more robust, and faster. / Buggrapporter är kritiska för underhåll av mjukvara och för att identifiera fel — en utmanande och tidskrävande uppgift. I de fall då felet och rapporterna liknar eller är identiska med tidigare och redan lösta ärenden, kan tiden som krävs minskas avsevärt, vilket gör automatiskt detektering av dubbletter mycket önskvärd. I detta arbete utvärderas och jämförs vanliga metoder och tekniker i litteraturen på domänspecifika och multimodala buggrapporter från Ericssons mjukvara. Antalet tillgängliga träningsexempel är få, vilket inte är ett så välstuderat fall. Utifrån detta utvärderas både traditionella samt nyare tekniker baserade på djupinlärning med målet att detektera dubbletter så bra som möjligt. Först utvärderas det mer traditionella tillvägagångssättet baserat på naturlig språkbearbetning och maskininlärning med hjälp av olika vektoriseringstekniker och likhetsmått specialanpassade till buggrapporterna. Multimodaliteten och de många datafälten i buggrapporterna kräver en rad av tekniker, så som termfrekvens-invers dokumentfrekvens, BM25 och latent semantisk analys. I detta arbete föreslås en modell som behandlar varje datafält i buggrapporterna separat och automatiskt sammanväger varje datafälts betydelse. Den bäst presterande modellen uppnår en återkallningsfrekvens på 89% för en lista med 10 dubblettkandidater. Vidare undersöks vilka datafält som är mest viktiga för dubblettdetektering genom Shapley-värden. Resultaten tyder på att utnyttja alla tillgängliga datafält förbättrar prestandan, och att datum och kodparametrar är starka indikatorer. Sedan utvärderas ett siamesiskt nätverk baserat på Transformator-kodare på datafält som tros ha en underliggande representation av semantisk betydelse eller sekventiellt viktig information, vilket en djup modell kan utnyttja. För att lindra de problem som uppstår med få träningssexempel, studeras det hur den djupa modellen kan förtränas genom automatisk datamärkning. Resultaten visar på en ökning i prestanda jämfört med att inte förträna det siamesiska nätverket. Men jämfört med den mer traditionella modellen presterar den likvärdigt, vilket indikerar att mer traditionella modeller kan prestera lika bra när antalet träningsexempel är få, förutom att också vara enklare, mer robusta, och snabbare.
2

Finding duplicate offers in the online marketplace catalogue using transformer based methods : An exploration of transformer based methods for the task of entity resolution / Hitta dubbletter av erbjudanden i online marknadsplatskatalog med hjälp av transformer-baserade metoder : En utforskning av transformer-baserad metoder för uppgiften att deduplicera

Damian, Robert-Andrei January 2022 (has links)
The amount of data available on the web is constantly growing, and e-commerce websites are no exception. Considering the abundance of available information, finding offers for the same product in the catalogue of different retailers represents a challenge. This problem is an interesting one and addresses the needs of multiple actors. A customer is interested in finding the best deal for the product they want to buy. A retailer wants to keep up to date with the competition and adapt its pricing strategy accordingly. Various services already offer the possibility of finding duplicate products in catalogues of e-commerce retailers, but their solutions are based on matching a Global Trade Identification Number (GTIN). This strategy is limited because a GTIN may not be made publicly available by a competitor, may be different for the same product exported by the manufacturer to different markets or may not even exist for low-value products. The field of Entity Resolution (ER), a sub-branch of Natural Language Processing (NLP), focuses on solving the issue of matching duplicate database entries when a deterministic identifier is not available. We investigate various solutions from the the field and present a new model called Spring R-SupCon that focuses on low volume datasets. Our work builds upon the recently introduced model, R-SupCon, introducing a new learning scheme that improves R-SupCon’s performance by up to 74.47% F1 score, and surpasses Ditto by up 12% F1 score for low volume datasets. Moreover, our experiments show that smaller language models can be used for ER with minimal loss in performance. This has the potential to extend the adoption of Transformer-based solutions to companies and markets where datasets are difficult to create, like it is the case for the Swedish marketplace Fyndiq. / Mängden data på internet växer konstant och e-handeln är inget undantag. Konsumenter har idag många valmöjligheter varifrån de väljer att göra sina inköp från. Detta gör att det blir svårare och svårare att hitta det bästa erbjudandet. Även för återförsäljare ökar svårigheten att veta vilken konkurrent som har lägst pris. Det finns tillgängliga lösningar på detta problem men de använder produktunika identifierare såsom Global Trade Identification Number (förkortat “GTIN”). Då det finns en rad utmaningar att bara förlita sig på lösningar som baseras på GTIN behövs ett alternativt tillvägagångssätt. GTIN är exempelvis inte en offentlig information och identifieraren kan dessutom vara en annan när samma produkt erbjuds på en annan marknad. Det här projektet undersöker alternativa lösningar som inte är baserade på en deterministisk identifierare. Detta projekt förlitar sig istället på text såsom produktens namn för att fastställa matchningar mellan olika erbjudanden. En rad olika implementeringar baserade på maskininlärning och djupinlärning studeras i detta projekt. Projektet har dock ett särskilt fokus på “Transformer”-baserade språkmodeller såsom BERT. Detta projekt visar hur man generera proprietär data. Projektet föreslår även ett nytt inlärningsschema och bevisar dess fördelar. / Le volume des données qui se trouve sur l’internet est en une augmentation constante et les commerces électroniques ne font pas note discordante. Le consommateur a aujourd’hui beaucoup des options quand il decide d’où faire son achat. Trouver le meilleur prix devient de plus en plus difficile. Les entreprises qui gerent cettes plates-formes ont aussi la difficulté de savoir en tous moments lesquels de ses concurrents ont le meilleur prix. Il y-a déjà des solutions en ligne qui ont l’objectif de résoudre ce problème, mais ils utilisent un identifiant de produit unique qui s’appelle Global Trade identification number (ou GTIN). Plusieurs difficultés posent des barriers sur cette solution. Par exemple, GTIN n’est pas public peut-être, ou des GTINs différents peut-être assigne par la fabricante au même produit pour distinguer des marchés différents. Ce projet étudie des solutions alternatives qui ne sont pas basées sur avoir un identifiant unique. On discute des methods qui font la décision en fonction du nom des produits, en utilisant des algorithmes d’apprentissage automatique ou d’apprentissage en profondeur. Le projet se concentre sur des solutions avec ”Transformer” modèles de langages, comme BERT. On voit aussi comme peut-on créer un ensemble de données propriétaire pour enseigner le modèle. Finalement, une nouvelle method d’apprentissage est proposée et analysée.

Page generated in 0.1052 seconds