Spelling suggestions: "subject:"ecr"" "subject:"ecol""
1 |
Finite Element Modeling of Extensor Carpi Radialis Longus and Brevis: Computation of Architectural Parameters and Physiological Cross Sectional Area as Whole Muscles and RegionsRavichandiran, Kajeandra 15 February 2010 (has links)
Physiological cross sectional area (PCSA) is used to compare force-producing capabilities of skeletal muscles. PCSA has been defined as the summation of the cross sectional area of the fiber bundles composing the muscle. As PCSA cannot be measured directly from a specimen, a formula requiring averaged muscle architectural parameters has traditionally been used. The purpose of this study was to develop a finite element method (FEM) to calculate PCSA of extensor carpi radialis longus (ECRL) and brevis (ECRB) directly from digitized fiber bundle data obtained throughout the volume of the muscle and to compare the PCSAs calculated using the FEM and formula methods. Differences were found between the FEM and formula method for both muscles. The FEM provides an approach that takes into account architectural variances while minimizing the need for averaged architectural parameters.
|
2 |
Finite Element Modeling of Extensor Carpi Radialis Longus and Brevis: Computation of Architectural Parameters and Physiological Cross Sectional Area as Whole Muscles and RegionsRavichandiran, Kajeandra 15 February 2010 (has links)
Physiological cross sectional area (PCSA) is used to compare force-producing capabilities of skeletal muscles. PCSA has been defined as the summation of the cross sectional area of the fiber bundles composing the muscle. As PCSA cannot be measured directly from a specimen, a formula requiring averaged muscle architectural parameters has traditionally been used. The purpose of this study was to develop a finite element method (FEM) to calculate PCSA of extensor carpi radialis longus (ECRL) and brevis (ECRB) directly from digitized fiber bundle data obtained throughout the volume of the muscle and to compare the PCSAs calculated using the FEM and formula methods. Differences were found between the FEM and formula method for both muscles. The FEM provides an approach that takes into account architectural variances while minimizing the need for averaged architectural parameters.
|
Page generated in 0.0503 seconds