• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Edelgase als Tracer für Wechselwirkungen von Krusten- und Mantelfluiden mit diamantführenden Gesteinen des östlichen Baltischen Schildes

Wiersberg, Thomas January 2001 (has links)
In der vorliegenden Arbeit werden anhand der Edelgaszusammensetzung von Kimberliten und Lamproiten sowie ihrer gesteinsbildenden Minerale die Wechselwirkungen dieser Gesteine mit Fluiden diskutiert. Die untersuchten Proben stammen vom östlichen Baltischen Schild, vom Kola-Kraton (Poria Guba und Kandalaksha) und vom karelischen Kraton (Kostamuksha). Edelgasanalysen nach thermischer oder mechanischer Gasextraktion von 23 Gesamtgesteinsproben und 15 Mineralseparaten ergeben folgendes Bild: Helium- und Neon-Isotopendaten der Fluideinschlüsse von Lamproiten aus Kostamuksha lassen auf den Einfluss einer fluiden Phase krustaler Herkunft schliessen. Diese Wechselwirkungen fanden wahrscheinlich schon während des Magmenaufstiegs statt, denn spätere Einflüsse krustaler Fluide auf die Lamproite und ihr Nebengestein (Quarzit) sind gering, wie anhand der C/<sup>36</sup>Ar-Zusammensetzung gezeigt wird. Auch sind die mit verschiedenen Datierungsmethoden (Rb-Sr, Sm-Nd, K-Ar) an Mineralseparaten und teilweise an Gesamtgestein ermittelten Alter konsistent und machen eine metamorphe Überprägung unwahrscheinlich. Aufgrund der Verteilung der primordialen Edelgasisotope zwischen Fluideinschlüssen und Gesteinsmatrix ist ein langsamer Magmenaufstieg anzunehmen, was die Möglichkeit der Kontamination mit einem krustalen Fluid während des Magmenaufstiegs erhöht.<br /> <br>Die Gasextraktion aus Mineralseparaten erfolgte thermisch, wodurch eine Freisetzung der Gase ausschließlich aus Fluideinschlüssen nicht möglich ist. Hierbei zeigen Amphibol und Klinopyroxen, separiert aus Kostamuksha-Lamproiten, in ihrer Neon-Isotopenzusammensetzung im Vergleich zur krustalen Zusammensetzung (Kennedy et al., 1990) ein leicht erhöhtes Verhältnis von <sup>20</sup>Ne/<sup>22</sup>Ne, was ein Hinweis auf Mantel-Neon sein könnte. Kalifeldspäte, Quarz und Karbonate enthalten dagegen nur Neon krustaler Zusammensetzung. Phlogopite haben sehr kleine Verhältnisse von <sup>20</sup>Ne/<sup>22</sup>Ne und <sup>21</sup>Ne/<sup>22</sup>Ne, zurückzuführen auf in-situ-Produktion von <sup>22</sup>Ne in Folge von U- und Th-Zerfallsprozessen.<br><br /> Wie unterschiedliche thermische Entgasungsmuster für <sup>40</sup>Ar und <sup>36</sup>Ar zeigen, ist <sup>36</sup>Ar in Fluideinschlüssen konzentriert. Das <sup>40</sup>Ar/<sup>36</sup>Ar-Isotopenverhältnis der Fluideinschlüsse von Lamproiten aus Kostamuksha ist antikorreliert mit der durch thermische Extraktion bestimmten Gesamtmenge an <sup>36</sup>Ar. Argon aus Fluideinschlüssen setzt sich daher aus zwei Komponenten zusammen: Einer Komponente mit atmosphärischer Argon-Isotopenzusammensetzung und einer krustalen Komponente mit einem Isotopenverhältnis <sup>40</sup>Ar/<sup>36</sup>Ar > 6000. Diffusion von radiogenem <sup>40</sup>Ar aus der Kristallmatrix in die Fluideinschlüsse spielt keine wesentliche Rolle.<br /> <br>Kimberlite aus Poria Guba und Kandalaksha zeigen anhand der Helium- und z. T. auch der Neon-Isotopenzusammensetzung eine Mantelkomponente in den Fluideinschlüssen an. Bei einem angenommenen <sup>20</sup>Ne/<sup>22</sup>Ne-Isotopenverhältnis von 12,5 in der Mantelquelle ergibt sich ein <sup>21</sup>Ne/<sup>22</sup>Ne-Isotopenverhältnis von 0,073 ± 0,011 sowie ein <sup>3</sup>He/<sup>4</sup>He-Isotopenverhältnis, welches im Vergleich zum subkontinentalem Mantel (Dunai und Baur, 1995) stärker radiogen geprägt ist. Solche Isotopensignaturen sind mit höheren Konzentrationen an Uran und Thorium in der Mantelquelle der Kimberlite zu erklären.<br /> <br>Rb-Sr- und Sm-Nd-Altersbestimmungen erfolgten von russischer Seite (Belyatskii et al., 1997; Nikitina et al., 1999) und ergeben ein Alter von 1,23 Ga für den Lamproitvulkanismus in Kostamuksha. Eigene K-Ar-Datierungen an Phlogopiten und Kalifeldspäten stimmen mit einem Alter von 1193 ± 20 Ma fast mit den Rb-Sr- und Sm-Nd-Altern überein. Die K-Ar-Datierung an einem Phlogopit aus Poria Guba, separiert aus dem Kimberlit PGK 12a, ergibt ein Alter von 396 Ma, ebenfalls in guter Übereinstimmung mit Rb-Sr-und Sm-Nd-Altern (ca. 400 Ma, Lokhov, pers. Mitteilung). K-Ar-Altersbestimmungen an Gesamtgestein aus Poria Guba erbrachten kein schlüssiges Alter. Die Rb-Sr- und Sm-Nd-Alter des Lamproitmagmatismus in Poria Guba betragen 1,72 Ga (Nikitina et al., 1999).<br /> <br>Vergleiche von gemessenen mit berechneten Edelgaskonzentrationen aus in-situ-Produktion zeigen weiterhin, dass in Abhängigkeit vom Alter der Probe Diffusionsprozesse stattgefunden haben, die zu unterschiedlichen und z. T. erheblichen Verlusten an Helium und Neon führten. Diffusionsverluste an Argon sind dagegen kaum signifikant. Unterschiedliche Diffusionsverluste in Abhängigkeit von Alter und betrachtetem Edelgas zeigen auch die primordialen Edelgase. / In the present thesis, interactions of kimberlites and lamproites as well as their constituent minerals with fluids are discussed based on noble gas compositions. The samples originate from the eastern Baltic Shield, more specifically from the Kola craton (Poria Guba and Kandalaksha) and the Karelia craton (Kostamuksha). Gas was extracted by stepwise heating and crushing from 23 whole rock samples and 15 mineral separates. These two techniques allow differential extraction of gas from fluid inclusions (crushing technique) and from the bulk sample (stepwise heating). The noble gas analyses provide the following information:</P> <P>Helium and neon isotopic compositions of fluid inclusions in lamproites reveal the presence of a crustal fluid phase. Fluid interaction probably ocurred already during the process of magma ascent. Interaction after lamproite emplacement seems unlikely. The lamproites and their host rock differ in the degree of fluid-rock interaction, as demonstrated by the C/<sup>36</sup>Ar composition. In addition, various dating methods (Rb-Sr, Sm-Nd, K-Ar) yield almost the same age within analytical error. Thus, a metamorphic overprint can be excluded. The distribution of primordial noble gases between fluid inclusions and crystal lattice suggests a relatively slow magma ascent, making an interaction of the lamproitic magma with crustal fluids even more likely. Since noble gases from mineral separates were extracted only by the stepwise heating method, gases stored in fluid inclusions could not be released separately.</P> <P>Amphibole and clinopyroxene separates yielded a higher <sup>20</sup>Ne/<sup>22</sup>Ne ratio in comparison to crustal composition (Kennedy et al., 1990). This presumably is an indication of a mantle derived fluid phase. On the other hand, neon isotopic composition of K-feldspar, quartz and carbonate separates are indistinguishable from the crustal composition. In comparison to other mineral separates, phlogopite yields very low ratios of <sup>20</sup>Ne/<sup>22</sup>Ne and <sup>21</sup>Ne/<sup>22</sup>Ne due to in situ production of <sup>22</sup>Ne, which is a result of nuclear reactions.</P> <P>The distinct thermal gas release patterns of <sup>40</sup>Ar and <sup>36</sup>Ar indicates that <sup>36</sup>Ar is concentrated in fluid inclusions. The <sup>40</sup>Ar/<sup>36</sup>Ar isotopic ratio in fluid inclusions shows a negative correlation with the total amount of <sup>36</sup>Ar released by thermal extraction. Therefore, argon from fluid inclusions is a simple 2-component mixture of air and a crustal component with an <sup>40</sup>Ar/<sup>36</sup>Ar ratio > 6000. It can be shown that diffusion of <sup>40</sup>Ar from the matrix into fluid inclusions is negligible.</P> <P>In contrast to lamproites, whole rock kimberlite samples from Poria Guba and Kandalaksha show clear evidence in helium and, to a certain extentalso in neon isotope ratios, of interaction with a mantle derived fluid phase. Assuming a <sup>20</sup>Ne/<sup>22</sup>Ne ratio of 12.5 for the mantle endmember, a <sup>21</sup>Ne/<sup>22</sup> Ne ratio of 0.073 ± 0.011 can be calculated. Likewise, the resulting <sup>3</sup>He/<sup>4</sup>He ratio is more strongly influenced by radiogenic helium in comparison to the mean subcontinental mantle (Dunai und Baur, 1995). Such behaviour reflects higher concentrations of uranium and thorium in the magma source of kimberlites than the subcontinental mantle.</P> <P>Rb-Sr and Sm-Nd age determinations (Belyatskii et al., 1997; Nikitina et al., 1999) yield 1.23 Ga for the lamproite magmatism in Kostamuksha. K-Ar dating of phlogopite and K-feldspar provides similar ages (1.19 Ga). K-Ar dating of a single phlogopite separate from the Kimberlite sample PGK12a from Poria Guba, yields an age of 396 Ma which corresponds well with Rb-Sr and Sm-Nd ages.</P> <P>Depending on sample age, distinct and partly extensive diffusive loss of helium and neon has occurred, as shown by comparison of measured and calculated concentrations of in situ produced isotopes. Diffusion loss is negligible for argon. This is also strongly supported by primordial noble gas composition.

Page generated in 0.0391 seconds