• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identities between Hecke Eigenforms

Bao, Dianbin January 2017 (has links)
In this dissertation, we study solutions to certain low degree polynomials in terms of Hecke eigenforms. We show that the number of solutions to the equation $h=af^2+bfg+g^2$ is finite for all $N$, where $f,g,h$ are Hecke newforms with respect to $\Gamma_1(N)$ of weight $k>2$ and $a,b\neq 0$. Using polynomial identities between Hecke eigenforms, we give another proof that the $j$-function is algebraic on zeros of Eisenstein series of weight $12k$. Assuming Maeda's conjecture, we prove that the Petersson inner product $\langle f^2,g\rangle$ is nonzero, where $f$ and $g$ are any nonzero cusp eigenforms for $SL_2(\mathhbb{Z})$ of weight $k$ and $2k$, respectively. As a corollary, we obtain that, assuming Maeda's conjecture, identities between cusp eigenforms for $SL_2(\mathbb{Z})$ of the form $X^2+\sum_{i=1}^n \alpha_iY_i=0$ all are forced by dimension considerations, i.e., a square of an eigenform for the full modular group is unbiased. We show by an example that this property does not hold in general for a congruence subgroup. Finally we attach our Sage code in the appendix. / Mathematics
2

On the nonvanishing of central L-values associated to Hecke eigenforms

Fotis, Sam Joseph 26 December 2014 (has links)
No description available.
3

Mass equidistribution of Hecke eigenforms on the Hilbert modular varieties

Liu, Sheng-Chi 15 July 2009 (has links)
No description available.

Page generated in 0.0489 seconds