• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 71
  • 32
  • 17
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 378
  • 378
  • 74
  • 68
  • 57
  • 45
  • 44
  • 38
  • 34
  • 33
  • 29
  • 27
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Numerical simulation of structural, electronic and optical properties of transition metal chalcogenides

Rugut, Elkana Kipkogei January 2017 (has links)
A dissertation submitted to the Faculty of Science University of the Witwatersrand, in partial fulfilment of the requirements for the degree of master of science (MSc) School of physics, University of Witwatersrand, 2017. / Intensive study on structural, electronic and optical properties of bulk transition metal dichalcogenides and dipnictogenides (MX2; where M = V, Nb and X = S, Se, Te, P) was undertaken. A relative stability test was done to determine the most stable ground state configuration via calculation of total ground state energy and volume which was fitted to the third order Birch-Murnaghan equation of state to extract lattice parameters. Cohesive energies of the above mentioned MX2 compounds and their elemental solids were then computed from which formation energies were acquired based on their respective equations of reaction between reactants and product. Its significance was to aid in determining if a material is energetically stable. Elastic constants were predicted from which mechanical properties i.e bulk, Young’s and shear moduli and consequently Poisson’s ratio were resolved by feeding the stiffness matrix onto online elastic tensor analysis tool which facilitated verification of their mechanical stability based on the well-known Born stability conditions which varies from one crystal system to another, at a later stage phonon dispersion curves were plotted after performing phonon calculation based on phonopy code to verify if the materials of concern are dynamically stable. After a material had fulfilled all the above stability tests, its structural study was initiated using various functionals. Functional that described best the structural properties of each individual compound considered was then applied in exploring its electronic and optical properties whose motivation was to find out the most stable phase as well as gauge if these materials could be used in various fields that suits their mechanical and optical properties. Furthermore, from carefully calculated optical spectra, plasma frequencies were analyzed which indicated the possibility of applying a material in plasmonic related fields. In addition to above, other factors to be considered when selecting a given electrode material that are crucial for optoelectronics are good chemical and thermal stabilities, high transparency and excellent conductivity. / XL2018
132

The dielectric behavior of perovskite-related manganese oxides with stretched bonds or multiferroic properties

Denyszyn, Jonathan Charles 28 August 2008 (has links)
Not available / text
133

Thermal stability of SrFeO3SiO2Si and SrFeO3AI2O3 thin film systems : transmission electron microscopy study of interfacial structures of the thin film systems and conductometric sensing response of SrFeO3AI2O3

Wang, Dashan, 1948- January 2007 (has links)
The literature review indicates that studies on the structures and properties of perovskites materials have shown attractive applications in the fields of energy, catalysts and sensing materials for fuel cell and sensing industries. Kinetic phenomena in thin film systems, such as solid state amorphization and interface reactions due to diffusion during thin film deposition, are introduced indicating that thermal stability is a concern in thin film sensor device application. The principle of traditional methods of materials characterization is briefly discussed. Emphasis is placed on the functions of analytical transmission electron microscopy. / The SrFeO3/SiO2/Si and SrFeO3/Al 2O3 thin film systems have been studied using transmission electron microscopy. The thin films of SrFeO3 were grown by pulsed laser deposition. For the SrFeO3/SiO2/Si system, TEM characterization showed that the microstructure of the film deposited at room temperature contained crystalline and amorphous layers. Silicon diffusion into SrFeO3 films occurred at the SiO2 interface. The silicon-induced interfacial reactions resulted in phase transformations and the growth of complex crystalline and amorphous phases. The principal compositions of these phases were Sr(Fe,Si)12O19, SrOx and amorphous [Sr-Fe-Si-O]. / The films in the SrFeO3/Al2O3 system were deposited onto single crystal and sintered polycrystalline Al2O 3 substrates at room temperature and 700°C and subjected to annealing for various periods of time at 700-1000°C. TEM characterization showed that the morphology of the film varied with changes in deposition temperature: a columnar structure was produced at room temperature and layers containing crystalline grains were produced at 700°C. The interfacial structures of the films remained unchanged below 700°C. Interfacial reactions were observed following annealing at 850°C for 5 hours. The phase transformation at the interface was characterized for the film annealed at 1000°C for 5 hours, for which the principal phases were identified as SrAl2-xFe xO4 and SrFe12-yAlyO19. As a result, an isothermal section at 1000°C of a ternary phase diagram for SrO-Al2O3-Fe2O3 is proposed. Evaluation for thin film conductometric sensing applications indicated that the untreated films deposited at 700°C onto both single crystal and sintered Al2O3 substrates exhibited a similar temperature dependency of conductivity in air and a p-type gas sensor response to oxygen and propane at 500°C.
134

Tight-binding calculation of electronic properties of oligophenyl and oligoacene nanoribbons

Hinkle, Adam R. January 2008 (has links)
Within recent years, allotropic structures of carbon have been produced in the forms of tubes and ribbons which offer the promise of extraordinary electronic and thermal properties. Here we present analyses of oligophenyl and oligoacene systems–infinite, one-dimensional chains of benzene rings linked along the armchair and zigzag directions. These one-dimensional structures, which are amenable to calculation by analytical means, exhibit features very similar to carbon nanotubes and nanoribbons. Using a tight-binding Hamiltonian we analytically determine the density of states, local density of states, and energy-band structure for the phenyl and the acene. We also examine the effect of disorder on the energies and the corresponding states. / Department of Physics and Astronomy
135

Thermal stability of SrFeO3SiO2Si and SrFeO3AI2O3 thin film systems : transmission electron microscopy study of interfacial structures of the thin film systems and conductometric sensing response of SrFeO3AI2O3

Wang, Dashan, 1948- January 2007 (has links)
No description available.
136

Electrochemical studies of pyrite and galena

Li, Yanqing 10 June 2009 (has links)
The major objective of this work was to investigate the initial oxidation behavior of pyrite in order to better understand how mine wastes containing pyrite generate acid water. It was found that a unique potential exists at which a fresh surface of pyrite undergoes neither oxidation nor reduction. This potential is pH dependent and is referred to as the "stable" potential. The stable potential was found to be 0 V at pH 4.6 and -0.3 V at pH 9.2. Fresh, unoxidized pyrite surfaces were obtained by fracturing under the electrolyte while holding at the stable potentials. The initial oxidation behavior of pure pyrite was investigated using cyclic voltammetry technique by beginning potential sweeps from the stable potential and sweeping in the positive-going or negative-going direction. The effects of semiconducting properties of pyrite on its electrochemical behavior were studied by photocurrent measurement. The results indicate that pyrite samples from Peru and Spain are all highly n-type. A spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edge over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. Electrochemical and photocurrent measurements were also conducted on galena for comparison with pyrite. The results indicate that galena samples from the same cluster have varying semiconducting properties, ranging from nearly intrinsic to highly n-type. Abrasion introduces defects in the surface of pyrite and galena, which strongly decrease the magnitude of photocurrent. / Master of Science
137

Characterisation of materials for organic photovoltaics

Thomsen, Elizabeth Alice January 2008 (has links)
Organic solar cells offer the possibility for lightweight, flexible, and inexpensive photovoltaic devices. This thesis studies the physics of a wide range of materials designed for use in organic solar cells. The materials investigated include conjugated polymers, conjugated dendrimers, and inorganic nanocrystals. The materials studied in this thesis fall into five categories: conjugated polymers blended with a buckminsterfullerene derivative PCBM, nanocrystals synthesised in a conjugated polymer matrix, conjugated polymers designed for intramolecular charge separation, conjugated dendrimers blended with PCBM, and nanocrystals synthesised in a matrix of conjugated small molecules or dendrimers. Conjugated polymers blended with PCBM have been extensively studied for photovoltaic applications, and hence form an ideal test bed for new experiments. In this thesis this blend was used to achieve the first pulsed electrically detected magnetic resonance experiments on organic solar cells. Nanocrystals are attractive for photovoltaics because it is possible to tune their band gap across the solar spectrum. In this thesis a one-pot synthesis is used to grow PbS and CdS nanocrystals in conjugated polymers, soluble small molecules, and dendrimers, and characterisation is performed on these composites. Previous work on dendrimer: nanocrystal composites has been limited to non-conjugated molecules, and the synthesis developed in this thesis extends this work to a conjugated oligomer and a conjugated dendrimer. This synthesis can potentially be extended to a variety of conjugated soluble small molecule: nanocrystal and dendrimer: nanocrystal systems. Conjugated dendrimers have been successfully employed in organic light emitting diodes, and in this thesis they are applied to organic solar cells. Materials based on fluorene and cyanine dye cores show excellent absorption tunability across the solar spectrum. A set of electronically asymetric polymers designed for intramolecular charge separation were investigated. Quenching of the luminescence was observed, and light induced electron paramagnetic resonance measurements revealed that photoexcitation led to approximately equal numbers of positive polarons and nitro centred radical anions. This indicates that charge separation is occurring in these molecules.
138

Metal-insulator transition in perovskite manganite: multilayers and junction. / 錳氧化物的金屬-絶緣體轉變: 多層薄膜及異構結 / Metal-insulator transition in perovskite manganite: multilayers and junction. / Meng yang hua wu de jin shu-jue yuan ti zhuan bian: duo ceng bo mo ji yi gou jie

January 2006 (has links)
by Tsai Yau Moon = 錳氧化物的金屬-絶緣體轉變 : 多層薄膜及異構結 / 蔡友滿. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Tsai Yau Moon = Meng yang hua wu de jin shu-jue yuan ti zhuan bian : duo ceng bo mo ji yi gou jie / Cai Youman. / Abstract / 論文摘要 / Acknowledgements / Table of Contents / List of Figures / List of Tables / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Perovskite-type structure / Chapter 1.2 --- Metal-insulator transition / Chapter 1.3 --- Magnetoresistance / Chapter 1.3.1 --- Giant magnetoresistance (GMR) / Chapter 1.3.2.1 --- Colossal magnetoresistance (CMR) in perovskite manganites / Chapter 1.3.2.2 --- Possible origin of CMR / Chapter 1.4 --- Brief review of p-n junction between perovskite manganites and STON (001) / Chapter 1.5 --- Our project / Chapter 1.6 --- Scope of this thesis work / References / Chapter Chapter 2 --- Preparation and characterization of manganite thin films / Chapter 2.1 --- Thin film deposition / Chapter 2.1.1 --- Facing-target sputtering (FTS) / Chapter 2.1.2 --- Vacuum system / Chapter 2.1.3 --- Deposition procedure / Chapter 2.1.4 --- Deposition conditions / Chapter 2.1.5 --- Oxygen annealing system / Chapter 2.1.6 --- Silver electrode coating system / Chapter 2.2 --- Characterization / Chapter 2.2.1 --- Alpha step profilometer / Chapter 2.2.2 --- X-ray diffraction (XRD) / Chapter 2.2.3 --- Transport property measurement / References / Chapter Chapter 3 --- [LCSMO/PCMO] multilayers / Chapter 3.1 --- [LCSMO (100 A)/PCMO (X A)] multilayers / Chapter 3.1.1 --- Sample preparation / Chapter 3.1.2 --- Results and discussion / Chapter 3.1.2.1 --- Structural analysis / Chapter 3.1.2.2 --- Transport properties / Chapter 3.2 --- [LCSMO (50 A)/PCMO (X A)] multilayers / Chapter 3.2.1 --- Sample preparation / Chapter 3.2.2 --- Results and discussion / Chapter 3.2.2.1 --- Structural analysis / Chapter 3.2.2.2 --- Transport properties / References / Chapter Chapter 4 --- [LSMO/PCMO] multilayers and LSMO/STON p-n junction / Chapter 4.1 --- [LSMO/PCMO] multilayers / Chapter 4.1.1 --- Sample preparation / Chapter 4.1.2 --- Results and discussion / Chapter 4.1.2.1 --- Structural analysis / Chapter 4.1.2.2 --- Magnetization / Chapter 4.2 --- LSMO/STON heterojunction / Chapter 4.2.1 --- Sample preparation / Chapter 4.2.2 --- Results and discussion / Chapter 4.2.2.1 --- Structural analysis / Chapter 4.2.2.2 --- Metal insulator transition of LSMO revealed by four point I-V measurement / Chapter 4.3 --- Conclusion / References / Chapter 5 Conclusion / Chapter 5.1 --- Conclusion / Chapter 5.2 --- Future outlook
139

Optimization of Printed Electronics

Yang, Shyuan January 2016 (has links)
Solution processed circuits are expected to be the main components to achieve low cost, large area, flexible electronics. However, the commercialization of solution processed flexible electronics face several challenges. The passive component such as capacitors are limited in frequency range and operating voltage. The active component such as transistors suffer from low mobility ultimately leading to limited current-carrying capacity. Just as in traditional silicon technology, the fabrication process and material choices significantly impact the performance of the fabricated devices. My thesis focuses on the optimization of the performance of printed capacitors and transistors through investigation of several aspects of the device structure and fabrication process. The first part of this work focuses on the optimization of printed nanoparticle/polymer composite capacitors. Thin film metal oxide nanoparticle/polymer composites have enormous potential to achieve printable high-k dielectrics. The combination of high-k ceramic nanoparticle and polymer enables room temperature deposition of high dielectric constant film without the need of high temperature sintering process. The polymer matrix host fills the packing voids left behind by the nanoparticles resulting to higher effective dielectric permittivity as a system and suppresses surface states leading to reduced dielectric loss. Such composite systems have been employed in a number of flexible electronic applications such as the dielectrics in capacitors and thin film transistors. One of the most important properties of thin film capacitors is the breakdown field. In a typical capacitor system, the breakdown process leads to catastrophic failure that destroys the capacitor; however, in a nanoparticle/polymer composite system with self-healing property, the point of breakdown is not well-defined. The breakdown of the dielectric or electrodes in the system limits the leakage observed. It is possible, however, to define a voltage/field tolerance. Field tolerance is defined as the highest practical field at which the device stays operational with low failure rate by qualifying the devices with defined leakage current density. In my work, the optimization of the field tolerance of (Ba,Sr)TiO₃ (BST)/parylene-C composite capacitors is achieved by studying the influence of the electromigration parameter on leakage and field strength through the inherit asymmetrical structure of the fabricated capacitors. One approach to creating these composites is to use a spin-coated nanoparticle film together with vapor deposited polymers, which can yield high performance, but also forms a structurally asymmetric device. The performance of a nanoparticle BST/parylene-C composite capacitor is compared to that of a nanoparticle BST capacitor without the polymer layer under both directions of bias. The composite device shows a five orders of magnitude improvement in the leakage current under positive bias of the bottom electrode relative to the pure-particle device, and four orders of magnitude improvement when the top electrode is positively biased. The voltage tolerance of the device is also improved, and it is asymmetric (44 V vs. 28 V in bottom and top positive bias, respectively). This study demonstrates the advantage of this class of composite device construction, but also shows that proper application of the device bias in this type of asymmetrical system can yield an additional benefit. The dependence of the field tolerance of nanoparticle/polymer composite capacitors on the electromigration parameter of the electrodes is investigated using the symmetrical dielectric system. The breakdown is suppressed by selecting the polarity used in nanoparticle (Ba,Sr)TiO₃/parylene-C composite film-based capacitors. Metals including gold, silver, copper, chromium, and aluminum with comparable surface conditions were examined as the electrodes. The asymmetric silver, aluminum, gold, copper, and chromium electrode devices show a 64 %, 29 %, 28 %, 17 %, 33 %, improvement in the effective maximum operating field, respectively, when comparing bias polarity. The field at which filament formation is observed shows a clear dependence on the electromigration properties of the electrode material and demonstrates that use of electromigration resistant metal electrodes offers an additional route to improving the performance of capacitors using this nanoparticle/polymer composite architecture. The second part of my thesis focuses on the novel pneumatic printing process that enables manipulation of the crystal growth of the organic semiconductors to achieve oriented crystal with high mobility. Small molecule organic semiconductors are attracting immense attention as the active material for the large-area flexible electronics due to their solution processability, mechanical flexibility, and potential for high performance. However, the ability to rapidly pattern and deposit multiple materials and control the thin-film morphology are significant challenges facing industrial scale production. A novel and simple pneumatic nozzle printing approach is developed to control the crystallization of organic thin-films and deposit multiple materials with wide range of viscosity including on the same substrate. Pneumatic printing uses capillary action between the nozzle and substrate combined with control of air pressure to dispense the solution from a dispense tip with a reservoir. Orientation and size of the crystals is controlled by tuning the printing direction, speed, and the temperature of the substrate. The main advantages of pneumatic printing technique are 1) simple setup and process, 2) multi-material layered deposition applicable to wide range of solution viscosity, 3) control over crystal growth. The manipulation of crystal growth will be discussed in the next chapter. This method for performance optimization and patterning has great potential for advancing printed electronics. The dependence of the mobility of printed thin film 6,13-bis(triisopropylsilylethynyl) pentacene [TIPS-pentacene] and C8-BTBT on printing conditions is investigated, and the result indicates that the formation of well-ordered crystals occurs at an optimal head translation speed. A maximum mobility of 0.75 cm²/(Vs) is achieved with 0.3 mm/s printing speed and 1.3 cm²/(Vs) with 0.3 mm/s printing speed at 50C for TIPS-pentacene and C8-BTBT respectively. In summary, pneumatic printing technique can be an attractive route to industrial scale large area flexible electronics fabrication.
140

Solution Processing Electronics Using Si6 H12 Inks: Poly-Si TFTs and Co-Si MOS Capacitors

Ullah, Syed Shihab January 2011 (has links)
The development of new materials and processes for electronic devices has been driven by the integrated circuit (IC) industry since the dawn of the computer era. After several decades of '"Moore's Law"-type innovation, future miniaturization may be slowed down by materials and processing limitations. By way of comparison, the nascent field of flexible electronics is not driven by the smallest possible circuit dimension, but instead by cost and form-factor where features typical of 1970s CMOS (i.e., channel length - IO μm) will enable flexible electronic technologies such as RFID, e-paper, photovoltaics and health monitoring devices. In this thesis. cyclohexasilane is proposed and used as a key reagent in solution processing of poly-Si and Co-Si thin films with the former used as the active layer in thin film transistors (TFTs) and the latter as the gate metal in metal-oxide-semiconductor (MOS) capacitors. A work function of 4.356 eV was determined for the Co-Si thin films via capacitance-voltage (C-Y) characterization which differs slightly from that extracted from ultraviolet photoemission spectroscopy (UPS) data (i.e., 4.8 eV). Simulation showed the difference between the C-V and UPS-derived data may be attributed to the existence of 8.3 x 10 (exponent 10) cm-2 interface charge density in the oxide-semiconductor junction. Poly-Si TFTs prepared using Si6 H12-based inks maintained the following electrical attributes: field effect mobility of 0.1 cm2V-1s-1; threshold voltage of 66 V; and, an on/off ratio of 1630. A BSIM3 version 3 NFET model was modified through global parametric extraction procedure to match the transfer characteristics of the fabricated poly-Si TFT. It is anticipated that this model can be utilized for future design simulation for solution-processed poly-Si circuits.

Page generated in 0.1056 seconds