1 |
METHOD OF FABRICATION FOR NERVE CUFF ELECTRODES FOR USE IN ANIMAL MODELSSanner, Brian 18 August 2015 (has links)
Many electrophysiological experiments require the recording, stimulating, or both in the peripheral nervous system. There are many electrodes currently on the market, but they are either not designed for implantation or are not robust enough to be used multiple times in situ. The cost of buying these electrodes from a manufacturer can be prohibitive and many labs prefer to make their own. This introduces variability between studies, as different techniques and configurations in the design and fabrication of electrodes can create variance in electrical impedance, spatial arrangement, or other factors. This paper presents a detailed methodology for the construction of electrodes that are robust, have uniform impedance values of Z = 2.38 ± 0.906 kΩ. at 1 kHz alternating current (AC), and can be used in multiple in vitro or in situ experiments, or for chronic implantation in vivo. This method will reduce the amount of time and material needed to construct electrodes for experimental studies in animals.
|
2 |
Non-Planar Diamond Electrodes for Biomedical Neural Sensing and StimulatingHalpern, Jeffrey Mark 17 May 2010 (has links)
No description available.
|
3 |
Nanostructured thin film pseudocapacitive electrodes for enhanced electrochemical energy storageO'Neill, Laura January 2014 (has links)
This thesis presents work relating to the fabrication of novel thin film electrodes for energy storage applications, with a focus on low cost, nanostructured transition metal oxides, and electrode manufacture by atomised spray deposition. Iron oxide (FeO<sub>x</sub>) nanowires were synthesised hydrothermally and combined with multi-walled carbon nanotubes (MWNT) in sprayed electrodes, which provided the necessary conductivity enhancement for effective energy storage. The spray processing technique allowed for facile control over the relative fraction of MWNTs in the sprayed electrodes. Optimised electrodes were investigated in a range of aqueous electrolytes, and the best energy storage behaviour occurred in Na<sub>2</sub>SO<sub>3</sub> with a maximum capacitance from cyclic voltammetry of 312 Fg<sup>-1</sup> at a scan rate of 2 mVs<sup>-1</sup>. The FeO<sub>x</sub>/MWNT electrodes were investigated for their suitability as lithium-ion battery anodes and showed reasonable energy storage behaviour. Nickel oxide (NiO) electrodes were manufactured by hydrothermal synthesis and annealing followed atomised spray deposition. The performance of the NiO electrodes was enhanced though combination with aqueous graphene suspensions, produced in-house by ultrasonic exfoliation of graphite. The processing route used to combine the nanomaterials was considered and a co-synthesis route resulted in the best performing electrodes. Different substrates were investigated, as the most commonly used Ni-foam substrate reacted with the basic electrolytes necessary for electrochemical activity of NiO. NiO/graphene electrodes showed charge/discharge capacitances of up to 571 Fg<sup>-1</sup> at a current density of 10 Ag<sup>-1</sup>, which was maintained at over 300 F/g at a very high current density of 100 Ag<sup>-1</sup>. Asymmetric supercapacitor devices were constructed using various combinations of FeO<sub>x</sub>, NiO, and commercial carbon black electrodes to extend the operating potential window beyond the ~1.23 V limit of symmetric aqueous-electrolyte devices. Power densities of over 20 kWkg<sup>-1</sup> were achieved for an FeO<sub>x</sub>/MWNT-carbon device, which was comparable with current commercial carbon-only supercapacitors.
|
4 |
The Electrocatalytic Behavior of Electrostatically Assembled Hybrid Carbon-Bismuth Nanoparticle Electrodes for Energy Storage ApplicationsSankar, Abhinandh 27 May 2016 (has links)
No description available.
|
Page generated in 0.0958 seconds