Spelling suggestions: "subject:"elliptic multiple etablerte"" "subject:"elliptic multiple detaljerte""
1 |
Iterated Integrals and genus-one open-string amplitudesRichter, Gregor 25 July 2018 (has links)
In den vergangenen Jahrzehnten rückte das häufige Auftreten von multiplen Polylogarithmen und multiplen Zeta-Werten, in Feynman-Diagramm Rechnungen niedriger Ordnung, verstärkt in den wissenschaftlichen Fokus. Hierbei offenbarte sich eine Verbindung zu den mathematischen Theorien der Perioden und der iterierten Integrale von Chen. Eine ähnliche Allgegenwärtigkeit von multiplen Zeta-Werten wurde jüngst auch in der α'-Entwicklung von Genus-Null Stringtheorie Amplituden beobachtet. Davon inspiriert befasst sich diese Arbeit mit der Systematik der iterierten Integralen in den Streuamplituden der offenen Stringtheorie. Unser Fokus liegt insbesondere auf der Genus-Eins Amplitude, welche sich vollständig durch iterierte Integrale, die bezüglich einer punktierten elliptischen Kurve definiert sind, ausdrücken lässt.
Wir führen den Begriff der getwisteten elliptischen multiplen Zeta-Werte ein. Dieser Begriff beschreibt eine Klasse von iterierten Integralen, die auf einer elliptischen Kurve definiert sind, bei welcher ein rationales Gitter entfernt wurde. Anschließend zeigen wir, dass die Entwicklung eines jeden getwisteten elliptischen multiplen Zeta-Wertes, bezüglich des modularen Parameters τ, durch ein Anfangswertproblem beschrieben wird. Weiterhin präsentieren wir ein Argument dafür, dass sich im Limes τ→i∞ jeder getwistete elliptische multiple Zeta-Wert durch zyklotomische multiple Zeta-Werte ausdrücken lässt. Schließlich beschreiben wir wie sich Genus-Eins Amplituden in offener Stringtheorie mithilfe von getwisteten elliptischen multiplen Zeta-Werten ausdrücken lassen und illustrieren dies für die Vier-Punkt Amplitude. Hierbei zeigt es sich, dass bis zu dritter Ordnung in α' alle Beiträge durch die Unterklasse der elliptischen multiplen Zeta-Werte ausgedrückt werden können, was wiederum äquivalent zu der Abwesenheit unphysikalischer Pole in Gliozzi-Scherk-Olive projizierter Superstringtheorie ist. / Over the last few decades the prevalence of multiple polylogarithms and multiple zeta values
in low order Feynman diagram computations of quantum field theory has received increased
attention, revealing a link to the mathematical theories of Chen’s iterated integrals and periods. More recently, a similar ubiquity of multiple zeta values was observed in the α'-expansion of genus-zero string theory amplitudes. Inspired by these developments, this work is concerned with the systematic appearance of iterated integrals in scattering amplitudes of open superstring theory. In particular, the focus will be on studying the genus-one amplitude, which requires the notion of iterated integrals defined on punctured elliptic curves.
We introduce the notion of twisted elliptic multiple zeta values that are defined as a class
of iterated integrals naturally associated to an elliptic curve with a rational lattice removed.
Subsequently, we establish an initial value problem that determines the expansions of twisted elliptic multiple zeta values in terms of the modular parameter τ of the elliptic curve. Any twisted elliptic multiple zeta value degenerates to cyclotomic multiple zeta values at the cusp τ → i∞, with the corresponding limit serving as the initial condition of the initial value problem. Finally, we describe how to express genus-one open-string amplitudes in terms of twisted elliptic multiple zeta values and study the four-point genus-one open-string amplitude as an example. For this example we find that up to third order in α' all possible contributions in fact belong to the subclass formed by elliptic multiple zeta values, which is equivalent to the absence of unphysical poles in Gliozzi-Scherk-Olive projected superstring theory.
|
Page generated in 0.0827 seconds