1 |
Development of data acquisition and analysis methods for chemical acoustic emissionSibbald, David Bruce January 1990 (has links)
Acoustic Emission Analysis (AEA) is the study of the sonic (and ultrasonic) energy released by chemical systems in the form of transient waves, as the system attempts to (re)attain equilibrium. This area of chemistry, and chemical analysis, is ripe for fundamental studies since it has been little explored. The high potential of the technique as a non-invasive, non-destructive reaction monitoring scheme suggests that numerous applications will follow.
In this work, an apparatus and software have been constructed to monitor acoustic emission (AE) and collect and process AE data. A broad-band piezoelectric transducer was used to convert the acoustic signals to electrical waveforms which could be captured by a digital storage oscilloscope. These waveforms were then stored on an IBM-compatible computer for further analysis.
Analysis of the data was performed using pattern recognition techniques. The signals were characterized through the use of descriptors which can map each signal onto a multi-dimensional feature space. Visualization of the data structure in multidimensional
space was accomplished using several methods. Hierarchical clustering was used to produce tree structures, known as dendrograms, which attempt to show clustering of the signals into various groups. Abstract factor analysis (AFA) - also called principal components analysis (PCA) - was used to project the data onto a two dimensional factor space to allow for direct viewing of structure in the multidimensional
data.
Sodium hydroxide dissolution, aluminum chloride hydration and heat activation of Intumescent Flame Retardants (IFR's) were used to test the assembled hardware and to provide data to submit to the pattern recognition algorithms coded as part of this
work. The solid-solid phase transition of trimethylolethane (Trimet), and the liquid crystal phase transitions of two liquid crystals (α-ѡ-bis(4-n-decylaniline-benzilidene-4'-oxyhexane), and 4-n-pentyloxybenzylidene-4'-n-heptylaniline) were also monitored and the signals analyzed.
The pattern recognition software was able to extract much information from the acoustically emitting samples - information which would not have been apparent by using standard (uni- and bi-variate) methods of analysis. Chemical acoustic emission, coupled with pattern recognition analysis, will be able to provide the chemist with knowledge (qualitative, quantitative, kinetic, etc.) about chemical systems which are often difficult or impossible to monitor and analyze by other means. / Science, Faculty of / Chemistry, Department of / Graduate
|
2 |
BAMBUVISKOS : En hållbar fiber för framtiden? / Bamboo Viscose : a Sustainable Fibre for the Future?Svensson, Karin, Magnusson, Elin January 2013 (has links)
Naturskyddsföreningen gav författarna uppgiften att undersöka förekommande viskosprocesser och alternativa regenereringsprocesser, detta för att identifiera hur hållbara de är ur ett miljöperspektiv och vilka processer som går att applicera på bambu. Detta för att se möjligheten att märka bambuviskos med Bra Miljöval och för att klargöra frekvent uppkommande frågor angående bambuviskos. Syftet är att se på de olika processernas kemiska innehåll samt vilka utsläpp de orsakar till luft och vatten. Ett delmål med rapporten är att den ska kunna användas som material vid vidareutveckling av kriterierna för Bra Miljöval Textil. Resultat som erhållits vid jämförelser av studerad litteratur är att de betydande faktorerna för miljöpåverkan från massaframställningen samt viskos- och lyocellprocessen beror av: använda kemikalier i processen, energianvändningen och vilken typ av energi, möjligheten till rening av utsläpp till luft och vatten samt återvinning av energi och kemikalier. Beroende på vilket råmaterial som används vid massaframställningen kan skillnader i markanvändning, användning av bekämpningsmedel och gödningsmedel samt upptagande av koldioxid skilja sig. Massa- och fiberframställning bör vara integrerade då energiförbrukning och mängd kemikalier kan minskas. Energin kan dessutom återvinnas till större utsträckning.Genom miljömärkningar från oberoende organisationer blir det lättare för konsumenter att göra miljömedvetna val och veta vad märkningarna står för. Sammanfattningsvis ska det påpekas att om regenererad bambu framställs som den görs idag är den ingen hållbar fiber, men sker framställningen i en integrerad process där kemikalier och energi återvinns samt rening av utsläpp till luft och vatten sker, kan bambuviskos bli en hållbar fiber för framtiden. The Swedish Society for Nature Conservation (SSNC) gave the authors the task to investigative present viscose processes and alternative regeneration processes to identify how sustainable they are from an environmental perspective, and examine which processes that can be applied to bamboo. This to see the possibility to label bamboo viscose with “Bra Miljöval” (Good Environmental Choice), which is the eco-label of SSNC, and to clarify the frequently emerging issues concerning bamboo viscose. The aim is to look at the various processes, their chemical content and the emissions they cause to air and water. Another objective of the report is that it can be used as material for further development of the criteria for “Bra Miljöval”.Results obtained when comparing the studied literature is that the significant factors of the environmental impact from the pulp production, the viscose and lyocell processes depends on: chemicals used in the process, energy and energy source, the possibility of purifying emissions to air and water and recycling of energy and chemicals. Depending on the raw materials used for pulp production, differences in land use, use of pesticides and fertilizers as well as absorption of carbon dioxide differ. Pulp and fibre production should be integrated to reduce energy consumption and the amount of chemicals used. The energy can also be recycled to a greater extent.Eco-labels from independent organizations will make it easier for consumers to make environmentally conscious choices and be aware of what the labels stand for.In conclusion, it should be noted that if the regenerated bamboo is produced as it is today, it is not a sustainable fibre. If the production is done through an integrated process in which chemicals and energy recovery and purification of air and water occurs, bamboo viscose can be a sustainable fibre for the future. / Program: Textilingenjörsutbildningen
|
Page generated in 0.0898 seconds