• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 29
  • 14
  • 7
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 184
  • 32
  • 29
  • 20
  • 20
  • 18
  • 17
  • 14
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

ENVIRONMENTAL AND ENERGETIC CONSTRAINTS ON COLD-WATER CORALS

Georgian, Sam Ellis January 2016 (has links)
Cold-water corals act as critical foundation species in the deep sea by creating extensive three-dimensional habitat structures that support biodiversity hotspots. There is currently a paucity of data concerning the environmental requirements and physiology of cold-water corals, severely limiting our ability to predict how resilient they will be to future environmental change. Cold-water corals are expected to be particularly vulnerable to the effects of ocean acidification, the reduction in seawater pH and associated changes to the carbonate system caused by anthropogenic CO2 emissions. Here, the ecological niche and physiology of the cold-water coral Lophelia pertusa is explored to predict its sensitivity to ocean acidification. Species distribution models were generated in order to quantify L. pertusa’s niche in the Gulf of Mexico with regard to parameters including seafloor topography, the carbonate system, and the availability of hard substrate. A robust oceanographic assessment of the Gulf of Mexico was conducted in order to characterize the current environmental conditions at benthic sites, with a focus on establishing the baseline carbonate system in L. pertusa habitats. Finally, an experimental approach was used to test the physiological response of biogeographically separated L. pertusa populations from the Gulf of Mexico and the Norwegian coast to ocean acidification. Based on my findings, it appears that L. pertusa already persists near the edge of its viable niche space in some locations, and therefore may be highly vulnerable to environmental change. However, experimental results suggest that some populations may be surprisingly resilient to ocean acidification, yielding broad implications for the continued persistence of cold-water corals in future oceans. / Biology
102

The Energetics of Transitibal and Transfemoral Amputees Walking on Titanium and Stainless Steel Prostheses

Scherer, Robert 08 1900 (has links)
Several studies have been devoted to the metabolic costs of amputees walking on prostheses with different masses added to their components. However, limited study has been directed at quantifying the mass differences of the actual materials available to amputees and the metabolic and mechanical work required to walk on these materials. The energetics of two materials currently used in the design of lower extremity prosthetics were examined in an attempt to determine if mass differences had an effect on amputee walking. A total of fifteen, unilateral amputees (8 transfemoral and 7 transtibial) performed treadmill walking on prostheses assembled from titanium and stainless steel components. Standardized components (knees, pylons, adapters, feet) made from each material were added below the level of the socket. Submaximal oxygen consumption {W/kg} and mechanical power allowing transfers within and between segments {W/kg} were calculated as subjects walked at self-selected velocities until steady state was achieved. Results show that despite significant mechanical differences [F(1,12)= 4.85, p<.048], the decreased mass associated with the use of titanium materials does not have an effect on the metabolic costs [F(1,14)=1.45, p<.249] of the subjects in this study. In addition, stride rate and stride length showed little differences when walking with both materials. Further division of subjects by age and experience walking on a prosthesis do suggest that older amputees and established walkers do benefit most from the use of titanium, both metabolically and mechanically. The choice of materials for use in every day walking will display differences in the mechanical work of amputees however, these differences are not great enough to realize metabolic consequences. / Thesis / Master of Science (MS)
103

Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry

Casey, Daniel Thomas January 2012 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student submitted PDF version of thesis. / Includes bibliographical references (p. 139-148). / A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from inertial confinement fusion (ICF) implosions. Using the MRS, the down-scattered neutron (DSn) spectrum has been used to infer the areal density ([rho]R) of ICF implosions for the first time. The DSn technique is essential for diagnosing high [rho]R (>180mg/cm²) cryogenic deuterium-tritium (DT) implosions, where most other methods fail. The MRS has helped to guide the cryogenic campaign toward the highest [rho]Rs ever achieved at OMEGA. In addition, the MRS is currently being used to diagnose the DSn spectrum from cryogenic implosions at the NIF during the beginning phases of the National Ignition Campaign (NIC). MRS data have already been essential for tuning these implosions to the highest [rho]Rs ever achieved in an ICF implosion (>1 g/cm²), and thus for guiding the NIC toward the realization of thermonuclear ignition. The first measurements of the T(t,2n)⁴He (TT) neutron spectrum in DT implosions at OMEGA have also been conducted using the MRS. The TT-neutron (TTn) spectrum was measured at low reactant central-mass energies of ~23 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, which is in contrast to the results obtained in higher energy accelerator experiments. Measurements of the TTn and DD proton yields were also conducted and compared to the DT neutron yield in DT implosions. From these measurements, it is concluded that the DD yield is anomalously low and the TTn yield is anomalously high, relative to the DT yield. These results have been explained by a stratification of the fuel in the core of an ICF implosion. / by Daniel Thomas Casey. / Ph.D.
104

Piezoresistivity Characterization of Polymer Bonded Energetic Nanocomposites under Cyclic Load Cases for Structural Health Monitoring Applications

Rocker, Samantha Nicole 11 July 2019 (has links)
The strain and damage sensing abilities of randomly oriented multi-walled carbon nanotubes (MWCNTs) dispersed in the polymer binder of energetic composites were experimentally investigated. Ammonium perchlorate (AP) crystals served as the inert energetic and atomized aluminum as the metallic fuel, both of which were combined to create a representative fuel-oxidizer filler often used for aerospace propulsive applications. MWCNTs were dispersed within an elastomer binder of polydimethylsiloxane (PDMS), and hybrid energetics were fabricated from it, with matrix material comprised of the identified fillers. The nanocomposites were characterized based on their stress-strain response under monotonic uniaxial compression to failure, allowing for the assessment of effects of MWCNTs and aluminum powder on average compressive elastic modulus, peak stress, and strain to failure. The piezoresistive response was measured as the change in impedance with applied monotonic strain in both the mesoscopic and microscopic strain regimes of mechanical loading for each material system, as well as under ten cycles of applied compressive loading within those same strain regimes. Gauge factors were calculated to quantify the magnitude of strain and damage sensing in MWCNT-enhanced material systems. Electrical response of single-cycle thermal loading was explored with epoxy in place of the elastomer binder of the previously discussed studies. Piezoresistive response due to microscale damage from thermal expansion was observed exclusively in material systems enhanced by MWCNTs. The results discussed herein validate structural health monitoring (SHM) applications for embedded carbon nanotube sensing networks in polymer-based energetics under unprecedented cyclic loads. / Master of Science / The ability to characterize both deformation and damage in real time within materials of high energetic content, such as solid rocket propellant, is of great interest in experimental mechanics. Common energetic ammonium perchlorate, in the fonn of crystal particles, was embedded in polymer binders (ie PDMS and epoxy) and investigated under a variety of me­chanical and thermal loads. Carbon nanotubes, conductive tube-shaped molecular structures of carbon atoms, have been demonstrated in prior proofs of concept to induce substantial electrical response change when dispersed in composites which are experiencing strain. With the introduction of carbon nanotubes in the energetic composites investigated herein, the electrical response of the material systems was measured as a change in impedance with applied strain. Elastomer-bonded energel.ks were t.esl.ed under monotonic compression and cyclic compression, and expanded exploration was done on these material systems with the additional particulate of aluminum powder, allowing for varied particulate sizes and conductivity enhancement of the overall composite. The magnitude of the resulting piezoresistive change due to strain and microscale damage was observed to increase dramatically in material systems enhanced by MWCNT networks. Local heating was used to explore thermal loading on epoxy-bonded energetic material systems, and sensing of permanent damage to the­ material through its CNT network was proven through a permanent change in the electrical response which was exclusive to the CNT-enhanced material systems. These results demon­strate valid structural health monitoring (SHM) applications for embedded carbon nanotube sensing networks in particulate energetic composites, under a variety of load cases.
105

Novel Methods for Co-crystallisation

Pagire, Sudhir K. January 2014 (has links)
The research described in this dissertation mainly covers the development of novel technologies for co-crystallisation along with the discovering of plumbagin co-crystal and thermodynamic interrelationship between the co-crystal polymorphs. Co-crystallisation is a fast growing field in the area of crystal design and has shown potential advantages in the field of pharmaceutical. Currently, many research groups are working on the development of new technologies for the synthesis of pure and stoichiometrically controlled co-crystals. In present study, three novel technologies have been developed for co-crystallisation, which include microwave assisted co-crystallisation, spherical crystallisation and microwave assisted sub-critical water processing. The microwave assisted co-crystallisation is a slurry based technology where, effects of drug solubility and dielectric properties of the solvent were investigated using caffeine / maleic acid as a model co-crystal pair. The mechanism of co-crystallisation under microwave irradiation has been proposed. The co-crystals of plumbagin with improved solubility were obtained with the coformers such as hydroquinone, resorcinol and urea using microwave assisted co-crystallisation technique. The spherical crystallisation technology was developed for co-crystallisation of carbamazepine / saccharin co-crystal pair and demonstrated its application for polymorphic control and as a potential technique for the purification of desired crystal form through surface energetic based separation. The thermodynamic interrelationship between Form I and Form II of carbamazepine / saccharin co-crystal was studied using different thermodynamic tests. The results obtained suggest that the carbamazepine / saccharin co-crystal polymorphs are monotropic. Microwave assisted sub-critical water processing has been explored as a green technology for the synthesis of co-crystals. Carbamazepine / saccharin co-crystal pair has been used as a model pair and effects of processing variables on the resulting crystal form and degradation of an API have been studied.
106

CHARACTERIZING MESOSCALE FEATURES IN PBX 9501 WITH WITNESS PLATES

Austin David Koeblitz (18359919) 12 April 2024 (has links)
<p dir="ltr">The effects of geometric features on detonation behavior have been well documented and demonstrated through examples spanning large-scale shaped charges to microscale “hot spots”. While extensive research has characterized interactions at either of these extremes – the macroscale (> 1 mm) and the microscale (< 0.1 μm) – the mesoscale (0.1 μm to 1 mm) remains less understood due to historical difficulties associated with producing and studying mesoscale features. Recent advancements in additive manufacturing have begun to change this by enabling the ability to precisely generate structures with such features, generating significant research interest. Experimental studies are hindered, however, by a dependence on diagnostic techniques that have high equipment costs, significant infrastructure requirements, and rely on sophisticated timing techniques, all of which inhibit progress. This work demonstrates the use of witness plates to characterize mesoscale features in a more cost and time-efficient way, speeding up experimentation while maintaining repeatability. The results reveal that mesoscale features cause unique damage that can be easily interpreted with tests conducted at optimal standoff distances. Non-optimal standoff distances can cause this damage to be obscured by the formation of a large underlying crater or significant surface texturing caused by the bulk explosive.</p>
107

Fundamentals of transport in poly(ethylene terephthalate) and poly(ethylene furanoate) barrier materials

Burgess, Steven K. 27 May 2016 (has links)
The increasing use of polymeric materials in food packaging applications is due to many factors; however, most are related to cost. While poly(ethylene terephthalate) (PET) is currently the industry standard for soft-drink bottles, more stringent requirements on the barrier properties to oxygen are needed for PET to expand further into more demanding markets (i.e., juice, etc). The current work examines the fundamental oxygen and carbon dioxide permeation and sorption properties of amorphous, caffeine antiplasticized PET and amorphous poly(ethylene furanoate) (PEF), which is a new biologically sourced polyester that exhibits significantly enhanced performance compared to petroleum-sourced PET. The fundamental transport data reported herein at 35°C illustrate that amorphous PEF exhibits significant reductions in permeability for oxygen (11X), carbon dioxide (19X), and water (2X) compared to amorphous PET. Such impressive barrier enhancements are unexpected since PEF exhibits a higher free volume compared to PET. Further investigation into the fundamental chain motional processes which contribute to penetrant diffusion, as probed via dynamic mechanical and solid-state NMR methods, reveals that the polymer ring-flipping motions in PEF are largely suppressed compared to those for PET. Such behavior allows for rationalization of the reduced transport properties compared to PET. Additional characterization techniques (i.e., thermal, mechanical, density, etc.) are used to develop a more complete understanding of PEF and caffeine antiplasticized PET, with the ultimate goal of relating these properties to penetrant transport.
108

Predicting food consumption and production in fish populations : allometric scaling and size-structured models

Wiff, Rodrigo January 2010 (has links)
Life-history traits in fish populations are highly correlated. A subset of these correlations are called allometric scaling, they refer to biological processes which can be described using body size as independent variable. Particularly, allometric scaling related with food consumption (Q) and biomass production (P) has gained the attention of ecologists for several decades. This thesis proposes a quantitative framework for food consumption, which allows both the identification of the mechanisms underlying the allometric scaling for Q and the development of a predictive model for consumption to biomass ratio (Q/B) in fish populations. This thesis is based on the fact that food consumption can be inferred from first principles underlying the von Bertalanffy growth model. In addition, it has been noticed in the literature that biomass production and food consumption show similar allometric scaling dependence, therefore, both can be derived from these first principles. Thus, a similar quantitative framework was used to produce models for P/B in fish populations. Once functional forms for production and food consumption were identified, a third model was developed for the ratio between production and consumption (P/Q). This ratio is usually named ecological efficiency because it determines how efficiently a population can transform ingested food into biomass. Several authors have noticed that P/Q remains invariant (independent of body size) across species. From a theoretical point of view, the results presented here allow the first quantitative explanation for the existence of the allometric scaling for Q/B and the invariance of P/Q across fish species. These results, together with the explanation for allometry in P/B reported in the literature, suggest that the regular across-species pattern for the trio {P/B,Q/B,P/Q} can be explained by basic principles that underpin life-history in fish populations. This quantitative framework for the trio {P/B,Q/B,P/Q} is based on an explicit dependence with body size, which simplifies the estimation of these quantities. Model complexity depends, in part, on which data are available. Models were applied to real data from commercially important species fished in Chile. Statistical properties of the new models were evaluated by an intensive resampling approach. The simplest possible model for the trio {P/B,Q/B,P/Q} rests on the assumption of a stable age distribution. These quantities have a key importance in ecosystem modelling because they determine population energetics in terms of food intake by predation and the transformation of this energy into population biomass of predators. Application of the new models produces results which were comparable to those given by standard methods. This thesis is a result of multidisciplinary research which attempts to make a contribution to the understanding of the mechanisms underlying the allometric scaling of food consumption and production in fish populations. It proposes models for the trio {P/B,Q/B,P/Q} and thus, has the potential to be widely applicable in fisheries science.
109

Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes

McNamara, James W., Li, Amy, Smith, Nicola J., Lal, Sean, Graham, Robert M., Kooiker, Kristina Bezold, van Dijk, Sabine J., Remedios, Cristobal G. dos, Harris, Samantha P., Cooke, Roger 05 1900 (has links)
Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
110

Finančněprávní aspekty podpory a zdanění výroby elektřiny ze slunečního záření / Financial and administrative aspects of the support and taxation of solar energy

Jančová, Kateřina January 2014 (has links)
This thesis examines with subsidies and taxes related to renewable energy generation, solar energy generation in particular. I have chosen this topic for its relevance to current situation and ongoing attention it enjoys from the media. The work comprises of five sections. In the first section, I focus on original renewable energy legislation that was in effect till year 2012. Here I discuss both Czech and European legislation with emphasis on the Czech system of subsidies based on the the Act No. 180/2005 Col. In the second part, I deal with solar generation boom during 2009 a 2010. I describe both causes of the solar boom and legislation adopted to lessen its negative effects. Specifically, I discuss the levy on solar generation, which has caused widespread debate and protests from the owners of the solar generation installations. Moreover, I discuss the reversals of the income tax examptions related to renewable electricity generation. The third part deals with finding of the Constitutional Court of the Czech Republic that reflects constitutional complaint of certain group of senators. This complaint postulated that aforementioned levy and reversal of the income tax exemption are unconstitutional, for they, according to those submitting the complaint, had retroactive effect and thus violated...

Page generated in 0.0628 seconds