• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 929
  • 373
  • 264
  • 99
  • 97
  • 89
  • 28
  • 20
  • 20
  • 18
  • 15
  • 15
  • 11
  • 9
  • 9
  • Tagged with
  • 2369
  • 505
  • 427
  • 425
  • 308
  • 249
  • 227
  • 222
  • 191
  • 186
  • 183
  • 176
  • 172
  • 167
  • 157
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Engine modelling for virtual mapping : development of a physics based cycle-by-cycle virtual engine that can be used for cyclic engine mapping applications, engine flow modelling, ECU calibration, real-time engine control or vehicle simulation studies

Pezouvanis, Antonios January 2009 (has links)
After undergoing a study about current engine modelling and mapping approaches as well as the engine modelling requirements for different applications, a major problem found to be present is the extensive and time consuming mapping procedure that every engine has to go through so that all control parameters can be derived from experimental data. To improve this, a cycle-by-cycle modelling approach has been chosen to mathematically represent reciprocating engines starting by a complete dynamics crankshaft mechanism model which forms the base of the complete engine model. This system is modelled taking into account the possibility of a piston pin offset on the mechanism. The derived Valvetrain model is capable of representing a variable valve lift and phasing Valvetrain which can be used while modelling most modern engines. A butterfly type throttle area model is derived as well as its rate of change which is believed to be a key variable for transient engine control. In addition, an approximation throttle model is formulated aiming at real-time applications. Furthermore, the engine inertia is presented as a mathematical model able to be used for any engine. A spark ignition engine simulation (SIES) framework was developed in MATLAB SIMULINK to form the base of a complete high fidelity cycle-by-cycle simulation model with its major target to provide an environment for virtual engine mapping procedures. Some experimental measurements from an actual engine are still required to parameterise the model, which is the reason an engine mapping (EngMap) framework has been developed in LabVIEW, It is shown that all the moving engine components can be represented by a single cyclic variable which can be used for flow model development.
12

Aspects of the off-design performance of axial flow compressors

Camp, Timothy Richard January 1995 (has links)
No description available.
13

Inlet distortion and compressor stability

Longley, John Peter January 1988 (has links)
No description available.
14

Control of spark ignition engines using in-cylinder ionisation sensors

Hands, T. January 1987 (has links)
This thesis is concerned with the potential applications for in-cylinder ionisation probes for the feedback control of spark ignition engines. Such sensors are shown to yield useful qualitative information about the combustion process. Two different implementations of an in-cylinder ionisation probe are investigated - both types are demonstrated to have potential for specific control applications. The first implementation is a <i>Flame front sensor</i> - here an ionisation probe is used to determine the time of flame arrival at a position remote from the spark plug. This parameter is typically subject to a high degree of cyclic variability, but is generally sensitive to variables which affect the flame speed such as air/fuel ratio, turbulence characteristics etc. The flame arrival time is shown to be useful as an indicator of relative cylinder to cylinder variations. The general signal characteristics were determined for a range of engine conditions and a system for the real-time, feedback control of a fuel injection system was developed and demonstrated. Results showed that, with the controller implemented on a four cylinder engine, the lean misfire limit could be extended to higher air/fuel ratios and the brake specific fuel consumption was improved. The second implementation of a <i>Post-flame ionisation sensor</i> -- the residual ionisation in the burnt gases behind a flame front is used to provide a signal which is sensitive to cylinder temperature and pressure. The central electrode of the spark plug is conveniently located to produce such a signal -- providing precautions are taken to protect the signal circuitry from the high voltage ignition spark. The signal characteristics of the spark plug ionisation probe were evaluated. Applications of the signal to the feedback control of ignition timing and/or fuelling, based on the estimation of peak cylinder pressure arrival and knock intensity, are demonstrated.
15

An exact penalty function algorithm for accurate optimisation of industrial problems

Dew, M. C. January 1985 (has links)
No description available.
16

Design of the low power stirling engine : Possible application to irrigation in rural areas of China

Li, X. January 1988 (has links)
No description available.
17

Heat transfer in a motored reciprocating engine

Al-Sudani, A. January 1985 (has links)
No description available.
18

The modelling and structural design of a diesel engine cylinder block

Mason, Timothy Paul January 1989 (has links)
No description available.
19

The exploitation of Cambridge Ring performance through the design and analysis of intelligent access logic

Martin, P. A. January 1985 (has links)
No description available.
20

Vibration analysis for the design on a turbo-generator based powertrain for hybrid vehicles

Leontopoulos, Chris January 1996 (has links)
No description available.

Page generated in 0.0445 seconds