• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 5
  • 2
  • 1
  • Tagged with
  • 38
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dynamic convex risk measures

Penner, Irina 17 March 2008 (has links)
In dieser Arbeit werden verschiedene Eigenschaften von dynamischen konvexen Risikomaßen für beschränkte Zufallsvariablen untersucht. Dabei gehen wir vor allem der Frage nach, wie die Risikobewertungen in verschiedenen Zeitpunkten von einander abhängen, und wie sich solche Zeitkonsistenzeigenschaften in der Dynamik der Penalty-Funktionen und Risikoprozesse widerspiegeln. Im Kapitel 2 widmen wir uns zunächst der starken Zeitkonsistenz und charakterisieren diese mithilfe von Akzeptanzmengen, Penalty-Funktionen und einer gemeinsamen Supermartingaleigenschaft des Risikoprozesses und seiner Penalty-Funktion. Die Charakterisierung durch Penalty-Funktionen liefert eine explizite Form der Doob- und der Riesz-Zerlegung des Prozesses der Penalty-Funktionen. Anschließend führen wir einen schwächeren Begriff der Zeitkonsistenz ein, den wir Besonnenheit nennen. In Analogie zu dem zeitkonsistenten Fall charakterisieren wir Besonnenheit durch Akzeptanzmengen, Penalty-Funktionen und eine bestimmte Supermartingaleigenschaft. Diese Supermartingaleigenschaft gilt allgemeiner für alle beschränkten adaptierten Prozesse, die sich ohne zusätzliches Risiko aufrechterhalten lassen. Wir nennen solche Prozesse nachhaltig und beschreiben Nachhaltigkeit durch eine gemeinsame Supermartingaleigenschaft des Prozesses und der schrittweisen Penalty-Funktionen. Dieses Resultat kann als eine verallgemeinerte optionale Zerlegung unter konvexen Restriktionen gesehen werden. Mithilfe der Supermartingaleigenschaft identifizieren wir das stark zeitkonsistente dynamische Risikomaß, das aus jedem beliebigen Risikomaß rekursiv konstruiert werden kann, als den kleinsten Prozeß, der nachhaltig ist und den Endverlust minimiert. Diese Beschreibung liefert ein neues Argument für den Einsatz von zeitkonsistenten Risikomaßen. Im Kapitel 3 diskutieren wir das asymptotische Verhalten von zeitkonsistenten und von besonnenen Risikomaßen hinsichtlich der asymptotischen Sicherheit und der asymptotischen Präzision. Im Kapitel 4 werden die allgemeinen Ergebnisse aus den Kapiteln 2 und 3 anhand des entropischen Risikomaßes und des Superhedging-Preisprozesses veranschaulicht. / In this thesis we study various properties of a dynamic convex risk measure for bounded random variables. The main subject is to investigate possible interdependence of conditional risk assessments at different times and the manifestation of these time consistency properties in the dynamics of corresponding penalty functions and risk processes. In Chapter 2 we focus first on the strong notion of time consistency and characterize it in terms of penalty functions, acceptance sets and a joint supermartingale property of the risk measure and its penalty function. The characterization in terms of penalty functions provides the explicit form of the Doob and of the Riesz decomposition of the penalty function process for a time consistent risk measure. Then we introduce and study a weaker notion of time consistency, that we call prudence. Similar to the time consistent case, we characterize prudent dynamic risk measures in terms of acceptance sets, of penalty functions and by a certain supermartingale property. This supermartingale property holds more generally for any bounded adapted process that can be upheld without any additional risk. We call such processes sustainable, and we give an equivalent characterization of sustainability in terms of a combined supermartingale property of a process and one-step penalty functions. This result can be viewed as a generalized optimal decomposition under convex constraints. The supermartingale property allows us to characterize the strongly time consistent risk measure arising from any dynamic risk measure via recursive construction as the smallest process that is sustainable and covers the final loss. Thus our discussion provides a new reason for using strongly time consistent risk measures. In Chapter 3 we discuss the limit behavior of time consistent and of prudent risk measures in terms of asymptotic safety and of asymptotic precision. In the final Chapter 4 we illustrate the general results of Chapter 2 and Chapter 3 by examples. In particular we study the entropic dynamic risk measure and the superhedging price process under convex constraints.
32

Etude et validation clinique d'un modèle aux moments entropique pour le transport de particules énergétiques : application aux faisceaux d'électrons pour la radiothérapie externe / Study and clinical validation of a deterministic moments based algorithm dedicated to the energetic particles transport simulations : application to the electron beams in external radiotherapy

Caron, Jérôme 07 December 2016 (has links)
En radiothérapie externe, les simulations des dépôts de dose aux patients sont réalisées sur des systèmesde planification de traitement (SPT) dotés d'algorithmes de calcul qui diffèrent dans leur modélisationdes processus physiques d'interaction des électrons et des photons. Or ces SPT, bien que rapides enclinique, montrent parfois des erreurs significatives aux abords des hétérogénéités du corps humain. Montravail de thèse a consisté à valider le modèle aux moments entropique M1 pour des faisceaux d'électronscliniques. Cet algorithme développé au CELIA dans le cadre de la physique des plasmas repose sur larésolution de l'équation cinétique de transport de Boltzmann linéarisée selon une décomposition auxmoments. M1 nécessite une fermeture du système d'équations basée sur le H-Théorème (maximisationde l'entropie). Les cartographies de dose 1D de faisceaux d'électrons de 9 et 20 MeV issues de M1 ontété comparées à celles issues de codes de référence : macro Monte-Carlo clinique (eMC) et full Monte-Carlo (GEANT-MCNPX) ainsi qu'à des données expérimentales. Les cas tests consistent en des fantômesd'abord homogènes puis de complexité croissante avec insertion d'hétérogéenéités mimant les tissus osseuxet pulmonaire. In fine, le modèle aux moments M1 démontre des propriétés de précision meilleures quecertains algorithmes de type Pencil Beam Kernel encore utilisés cliniquement et proches de celles fourniespar des codes full Monte-Carlo académiques ou macro Monte-Carlo cliniques, même dans les cas testscomplexes retenus. Les performances liées aux temps de calcul de M1 ont été évaluées comme étantmeilleures que celles de codes Monte-Carlo. / In radiotherapy field, dose deposition simulations in patients are performed on Treatment Planning Systems (TPS) equipped with specific algorithms that differ in the way they model the physical interaction processes of electrons and photons. Although those clinical TPS are fast, they show significant discrepancies in the neighbooring of inhomogeneous tissues. My work consisted in validating for clinical electron beams an entropic moments based algorithm called M1. Develelopped in CELIA for warm and dense plasma simulations, M1 relies on the the resolution of the linearized Boltzmann kinetic equation for particles transport according to a moments decomposition. M1 equations system requires a closure based on H-Theorem (entropy maximisation). M1 dose deposition maps of 9 and 20 MeV electron beams simulations were compared to those extracted from reference codes simulations : clinical macro Monte-Carlo (eMC) and full Monte-carlo (GEANT4-MCNPX) codes and from experimental data as well. The different test cases consisted in homogeneous et complex inhomogeneous fantoms with bone and lung inserts. We found that M1 model provided a dose deposition accuracy better than some Pencil Beam Kernel algorithm and close of those furnished by clinical macro and academic full Monte-carlo codes, even in the worst inhomogeneous cases. Time calculation performances were also investigated and found better than the Monte-Carlo codes.
33

Contribution à l’analyse expérimentale du comportement thermomécanique du caoutchouc naturel / Contribution to the experimental analysis of the thermomechanical behavior of natural rubber

Caborgan, Rodica 16 December 2011 (has links)
Une analyse du comportement thermomécanique du caoutchouc naturel est réalisée en combinant deux techniques d'imagerie quantitative. La corrélation d'images visibles sert à estimer les déformations puis l'énergie de déformation alors que des images infrarouges permettent d'estimer, via l'équation de diffusion, les quantités de chaleur mise en jeu. La construction de bilans d'énergie montre alors l'importance relative des mécanismes dissipatifs et de couplage thermomécanique. A basse fréquence pour de faibles déformations, les résultats permettent de retrouver le fameux effet d'inversion thermoélastique. A déformation plus importante, les résultats montrent une compétition sur le plan énergétique entre élasticité entropique et mécanismes de cristallisation/fusion sous contrainte. Aucun effet dissipatif significatif n'est détecté à basse comme en haute fréquence alors que dans chaque cas, sur le plan mécanique, une aire d'hystérésis caractérise la réponse cyclique du matériau. / An analysis of the thermomechanical behavior of the natural rubber is carried out by combining two quantitative imaging techniques. The digital image correlation of visible images is used to estimate the strain and then the deformation energy whereas infrared images make it possible to estimate, via the heat equation, the amounts of heat involved in the material transformation. The construction of energy balance enables us to determine the relative importance of the dissipative and thermomechanical coupling mechanisms. For low frequency and low extension ratio, the results show the famous thermoelastic inversion effect. From an energy standpoint, a competition between entropic elasticity and stress-induced crystallization/fusion mechanisms is observed for more significant extension ratios. No significant dissipative effect can be detected at low or high loading frequency whereas in each case, a stress-strain hysteresis characterizes the cyclic response of the material.
34

PEREGRINATION: A MUSICAL SKETCH OF EUROPE IN FOUR MOVEMENTS

Schellhas, Daniel H. 26 March 2007 (has links)
No description available.
35

Generalized Talagrand Inequality for Sinkhorn Distance using Entropy Power Inequality / Generaliserad Talagrand Inequality för Sinkhorn Distance med Entropy Power Inequality

Wang, Shuchan January 2021 (has links)
Measure of distance between two probability distributions plays a fundamental role in statistics and machine learning. Optimal Transport (OT) theory provides such distance. Recent advance in OT theory is a generalization of classical OT with entropy regularized, called entropic OT. Despite its convenience in computation, it still lacks theoretical support. In this thesis, we study the connection between entropic OT and Entropy Power Inequality (EPI). First, we prove an HWI-type inequality making use of the infinitesimal displacement convexity of OT map. Second, we derive two Talagrand-type inequalities using the saturation of EPI that corresponds to a numerical term in our expression. We evaluate for a wide variety of distributions this term whereas for Gaussian and i.i.d. Cauchy distributions this term is found in explicit form. We show that our results extend previous results of Gaussian Talagrand inequality for Sinkhorn distance to the strongly log-concave case. Furthermore, we observe a dimensional measure concentration phenomenon using the new Talagrand-type inequality. / Mått på avstånd mellan två sannolikhetsfördelningar spelar en grundläggande roll i statistik och maskininlärning. Optimal transport (OT) teori ger ett sådant avstånd. Nyligen framsteg inom OT-teorin är en generalisering av klassisk OT med entropi-reglerad, kallad entropisk OT. Trots dess bekvämlighet i beräkning saknar det fortfarande teoretiskt stöd. I denna avhandling studerar vi sambandet mellan entropisk OT och Entropy Power Inequality (EPI). Först bevisar vi en ojämlikhet av HWI-typ med användning av OT-kartans oändliga förskjutningskonvexitet. För det andra härleder vi två Talagrand-typkvaliteter med mättnaden av EPI som motsvarar ett numeriskt uttryck vårt uttryck. Vi utvärderar för ett brett utbud av distributioner den här termen för Gauss och i.i.d. Cauchy-distributioner denna term finns oförklarlig form. Vi visar att våra resultat utökar tidigare resultat av GaussianTalagrand-ojämlikhet för Sinkhorn-avstånd till det starkt log-konkava fallet. Dessutom observerar vi ett dimensionellt mått koncentrationsfenomen mot den nya Talagrand-typen ojämlikhet.
36

Výukový video kodek / Educational video codec

Dvořák, Martin January 2012 (has links)
The first goal of diploma thesis is to study the basic principles of video signal compression. Introduction to techniques used to reduce irrelevancy and redundancy in the video signal. The second goal is, on the basis of information about compression tools, implement the individual compression tools in the programming environment of Matlab and assemble simple model of the video codec. Diploma thesis contains a description of the three basic blocks, namely - interframe coding, intraframe coding and coding with variable length word - according the standard MPEG-2.
37

Numerical Methods for Multi-Marginal Optimal Transportation / Méthodes numériques pour le transport optimal multi-marges

Nenna, Luca 05 December 2016 (has links)
Dans cette thèse, notre but est de donner un cadre numérique général pour approcher les solutions des problèmes du transport optimal (TO). L’idée générale est d’introduire une régularisation entropique du problème initial. Le problème régularisé correspond à minimiser une entropie relative par rapport à une mesure de référence donnée. En effet, cela équivaut à trouver la projection d’un couplage par rapport à la divergence de Kullback-Leibler. Cela nous permet d’utiliser l’algorithme de Bregman/Dykstra et de résoudre plusieurs problèmes variationnels liés au TO. Nous nous intéressons particulièrement à la résolution des problèmes du transport optimal multi-marges (TOMM) qui apparaissent dans le cadre de la dynamique des fluides (équations d’Euler incompressible à la Brenier) et de la physique quantique (la théorie de fonctionnelle de la densité ). Dans ces cas, nous montrons que la régularisation entropique joue un rôle plus important que de la simple stabilisation numérique. De plus, nous donnons des résultats concernant l’existence des transports optimaux (par exemple des transports fractals) pour le problème TOMM. / In this thesis we aim at giving a general numerical framework to approximate solutions to optimal transport (OT) problems. The general idea is to introduce an entropic regularization of the initialproblems. The regularized problem corresponds to the minimization of a relative entropy with respect a given reference measure. Indeed, this is equivalent to find the projection of the joint coupling with respect the Kullback-Leibler divergence. This allows us to make use the Bregman/Dykstra’s algorithm and solve several variational problems related to OT. We are especially interested in solving multi-marginal optimal transport problems (MMOT) arising in Physics such as in Fluid Dynamics (e.g. incompressible Euler equations à la Brenier) and in Quantum Physics (e.g. Density Functional Theory). In these cases we show that the entropic regularization plays a more important role than a simple numerical stabilization. Moreover, we also give some important results concerning existence and characterization of optimal transport maps (e.g. fractal maps) for MMOT .
38

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau / Asymptotic theorems for Boltzmann and Landau equations

Carrapatoso, Kléber 09 December 2013 (has links)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau. / This thesis is concerned with kinetic theory and many-particle systems in the setting of Boltzmann and Landau equations. Firstly, we study the derivation of kinetic equation as mean field limits of many-particle systems, using the concept of propagation of chaos. More precisely, we study chaotic probabilities on the phase space of such particle systems : the Boltzmann's sphere, which corresponds to the phase space of a many-particle system undergoing a dynamics that conserves momentum and energy ; and the Kac's sphere, which corresponds to the energy conservation only. Then we are concerned with the propagation of chaos, with quantitative and uniform in time estimates, for Boltzmann and Landau equations. Secondly, we study the long-time behaviour of solutions to the Landau equation.

Page generated in 0.0758 seconds