• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 14
  • 11
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Komplexitäts- und Entscheidbarkeitsresultate für inverse Monoide mit idempotenter Präsentation

Ondrusch, Nicole. January 2006 (has links)
Stuttgart, Univ., Diss., 2006.
2

Reguläre Häufigkeitsberechnungen

Austinat, Holger. January 2005 (has links) (PDF)
Stuttgart, Univ., Diss., 2005.
3

Forbidden-Patterns and Word Extensions for Concatenation Hierarchies / Verbotsmuster und Worterweiterungen für Konkatenationshierarchien

Glaßer, Christian January 2001 (has links) (PDF)
Starfree regular languages can be build up from alphabet letters by using only Boolean operations and concatenation. The complexity of these languages can be measured with the so-called dot-depth. This measure leads to concatenation hierarchies like the dot-depth hierarchy (DDH) and the closely related Straubing-Thérien hierarchy (STH). The question whether the single levels of these hierarchies are decidable is still open and is known as the dot-depth problem. In this thesis we prove/reprove the decidability of some lower levels of both hierarchies. More precisely, we characterize these levels in terms of patterns in finite automata (subgraphs in the transition graph) that are not allowed. Therefore, such characterizations are called forbidden-pattern characterizations. The main results of the thesis are as follows: forbidden-pattern characterization for level 3/2 of the DDH (this implies the decidability of this level) decidability of the Boolean hierarchy over level 1/2 of the DDH definition of decidable hierarchies having close relations to the DDH and STH Moreover, we prove/reprove the decidability of the levels 1/2 and 3/2 of both hierarchies in terms of forbidden-pattern characterizations. We show the decidability of the Boolean hierarchies over level 1/2 of the DDH and over level 1/2 of the STH. A technique which uses word extensions plays the central role in the proofs of these results. With this technique it is possible to treat the levels 1/2 and 3/2 of both hierarchies in a uniform way. Furthermore, it can be used to prove the decidability of the mentioned Boolean hierarchies. Among other things we provide a combinatorial tool that allows to partition words of arbitrary length into factors of bounded length such that every second factor u leads to a loop with label u in a given finite automaton. / Sternfreie reguläre Sprachen können aus Buchstaben unter Verwendung Boolescher Operationen und Konkatenation aufgebaut werden. Die Komplexität solcher Sprachen lässt sich durch die sogenannte "Dot-Depth" messen. Dieses Maß führt zu Konkatenationshierarchien wie der Dot-Depth-Hierachie (DDH) und der Straubing-Thérien-Hierarchie (STH). Die Frage nach der Entscheidbarkeit der einzelnen Stufen dieser Hierarchien ist als (immer noch offenes) Dot-Depth-Problem bekannt. In dieser Arbeit beweisen wir die Entscheidbarkeit einiger unterer Stufen beider Hierarchien. Genauer gesagt charakterisieren wir diese Stufen durch das Verbot von bestimmten Mustern in endlichen Automaten. Solche Charakterisierungen werden Verbotsmustercharakterisierungen genannt. Die Hauptresultate der Arbeit lassen sich wie folgt zusammenfassen: Verbotsmustercharakterisierung der Stufe 3/2 der DDH (dies hat die Entscheidbarkeit dieser Stufe zur Folge) Entscheidbarkeit der Booleschen Hierarchie über der Stufe 1/2 der DDH Definition von entscheidbaren Hierarchien mit engen Verbindungen zur DDH und STH Darüber hinaus beweisen wir die Entscheidbarkeit der Stufen 1/2 und 3/2 beider Hierarchien (wieder mittels Verbotsmustercharakterisierungen) und die der Booleschen Hierarchien über den Stufen 1/2 der DDH bzw. STH. Dabei stützen sich die Beweise größtenteils auf eine Technik, die von Eigenschaften bestimmter Worterweiterungen Gebrauch macht. Diese Technik erlaubt eine einheitliche Vorgehensweise bei der Untersuchung der Stufen 1/2 und 3/2 beider Hierarchien. Außerdem wird sie in den Beweisen der Entscheidbarkeit der genannten Booleschen Hierarchien verwendet. Unter anderem wird ein kombinatorisches Hilfsmittel zur Verfügung gestellt, das es erlaubt, Wörter beliebiger Länge in Faktoren beschränkter Länge zu zerlegen, so dass jeder zweite Faktor u zu einer u-Schleife in einem gegebenen endlichen Automaten führt.
4

Exploring the limits of parameterized system verification

Stahl, Karsten. Unknown Date (has links) (PDF)
University, Diss., 2003--Kiel.
5

Datalog on infinite structures

Schwandtner, Goetz 20 November 2008 (has links)
Datalog ist die relationale Variante der logischen Programmierung und ist eine Standard-Abfragesprache in der Datenbankentheorie geworden. Die Programmkomplexität von Datalog im bisherigen Hauptanwendungsgebiet, auf endlichen Strukturen, ist bekanntermassen in EXPTIME. Wir untersuchen die Komplexität von Datalog auf unendlichen Strukturen, motiviert durch mögliche Anwendungen von Datalog auf unendlichen Strukturen (z.B. linearen Ordnungen) im zeitlichen und räumlichen Schliessen, aber auch durch das aufkommende Interesse an unendlichen Strukturen bei verwandten theoretischen Problemen, wie Constraint Satisfaction Problems (CSP): Im Gegensatz zu endlichen Strukturen können Datalog-Berechnungen auf unendlichen Strukturen unendlich lange dauern, was zur Unentscheidbarkeit von Datalog auf unendlichen Strukturen führen kann. Aber auch in den entscheidbaren Fällen kann die Komplexität von Datalog auf unendlichen Strukturen beliebig hoch sein. Im Hinblick auf dieses Ergebnis widmen wir uns dann unendlichen Strukturen mit der niedrigsten Komplexität von Datalog: Wir zeigen, dass Datalog auf linearen Ordnungen (auch dichte und diskrete, mit oder ohne Konstanten und sogar gefärbte) und Baumordnungen EXPTIME-vollständig ist. Für die Bestimmung der oberen Schranke werden Werkzeuge für Datalog auf Ordnungen eingeführt: Ordnungstypen, Abstandstypen und typdisjunkte Programme. Die Typkonzepte liefern eine endliche Beschreibung der unendlichen Programmergebnisse und könnten auch für praktische Anwendungen von Interesse sein. Wir erzeugen spezielle typdisjunkte Programme, die sich ohne Rekursion lösen lassen. Ein Transfer unserer Methoden auf CSPs zeigt, dass CSPs auf unendlichen Strukturen mit beliebig hoher Zeitkomplexität vorkommen, wie Datalog. / Datalog is the relational variant of logic programming and has become a standard query language in database theory. The (program) complexity of datalog in its main context so far, on finite databases, is well known to be in EXPTIME. We research the complexity of datalog on infinite databases, motivated by possible applications of datalog to infinite structures (e.g. linear orders) in temporal and spatial reasoning on one hand and the upcoming interest in infinite structures in problems related to datalog, like constraint satisfaction problems: Unlike datalog on finite databases, on infinite structures the computations may take infinitely long, leading to the undecidability of datalog on some infinite structures. But even in the decidable cases datalog on infinite structures may have arbitrarily high complexity, and because of this result, we research some structures with the lowest complexity of datalog on infinite structures: Datalog on linear orders (also dense or discrete, with and without constants, even colored) and tree orders has EXPTIME-complete complexity. To achieve the upper bound on these structures, we introduce a tool set specialized for datalog on orders: Order types, distance types and type disjoint programs. The type concept yields a finite representation of the infinite program results, which could also be of interest for practical applications. We create special type disjoint versions of the programs allowing to solve datalog without the recursion inherent in each datalog program. A transfer of our methods shows that constraint satisfaction problems on infinite structures occur with arbitrarily high time complexity, like datalog.
6

Two Techniques in the Area of the Star Problem

Kirsten, Daniel, Marcinkowski, Jerzy 30 November 2012 (has links) (PDF)
This paper deals with decision problems related to the star problem in trace monoids, which means to determine whether the iteration of a recognizable trace language is recognizable. Due to a theorem by G. Richomme from 1994 [32, 33], we know that the star problem is decidable in trace monoids which do not contain a submonoid of the form {a,c}* x {b,d}*. Here, we consider a more general problem: Is it decidable whether for some recognizable trace language and some recognizable or finite trace language P the intersection R ∩ P* is recognizable? If P is recognizable, then we show that this problem is decidale iff the underlying trace monoid does not contain a submonoid of the form {a,c}* x b*. In the case of finite languages P, we show several decidability and undecidability results.
7

A New Combination Procedure for the Word Problem that Generalizes Fusion Decidability Results in Modal Logics

Baader, Franz, Ghilardi, Silvio, Tinelli, Cesare 30 May 2022 (has links)
Previous results for combining decision procedures for the word problem in the non-disjoint case do not apply to equational theories induced by modal logics - which are not disjoint for sharing the theory of Boolean algebras. Conversely, decidability results for the fusion of modal logics are strongly tailored towards the special theories at hand, and thus do not generalize to other types of equational theories. In this paper, we present a new approach for combining decision procedures for the word problem in the non-disjoint case that applies to equational theories induced by modal logics, but is not restricted to them. The known fusion decidability results for modal logics are instances of our approach. However, even for equational theories induced by modal logics our results are more general since they are not restricted to so-called normal modal logics. / This report has also appeared as Report No. 03-03, Department of Computer Science, The University of Iowa.
8

Deciding the Word Problem for Ground Identities with Commutative and Extensional Symbols

Baader, Franz, Kapur, Deepak 20 June 2022 (has links)
The word problem for a finite set of ground identities is known to be decidable in polynomial time using congruence closure, and this is also the case if some of the function symbols are assumed to be commutative. We show that decidability in P is preserved if we add the assumption that certain function symbols f are extensional in the sense that f(s1,…,sn) ≈ f(t1,…,tn) implies s1 ≈ t1,…,sn ≈ tn. In addition, we investigate a variant of extensionality that is more appropriate for commutative function symbols, but which raises the complexity of the word problem to coNP.
9

Decidability and Complexity of Threshold Description Logics Induced by Concept Similarity Measures

Baader, Franz, Gil, Oliver Fernández 20 June 2022 (has links)
In a recent research paper, we have proposed an extension of the lightweight Description Logic (DL) EL in which concepts can be defined in an approximate way. To this purpose, the notion of a graded membership function m, which instead of a Boolean membership value 0 or 1 yields a membership degree from the interval [0; 1], was introduced. Threshold concepts can then, for example, require that an individual belongs to a concept C with degree at least 0:8. Reasoning in the threshold DL T EL(m) obtained this way of course depends on the employed graded membership function m. The paper defines a specific such function, called deg, and determines the exact complexity of reasoning in T EL(deg). In addition, it shows how concept similarity measures (CSMs) ~ satisfying certain properties can be used to define graded membership functions m~, but it does not investigate the complexity of reasoning in the induced threshold DLs T EL(m~). In the present paper, we start filling this gap. In particular, we show that computability of ~ implies decidability of T EL(m~), and we introduce a class of CSMs for which reasoning in the induced threshold DLs has the same complexity as in T EL(deg).
10

Decidability Equivalence between the Star Problem and the Finite Power Problem in Trace Monoids

Kirsten, Daniel, Richomme, Gwénaël 28 November 2012 (has links) (PDF)
In the last decade, some researches on the star problem in trace monoids (is the iteration of a recognizable language also recognizable?) has pointed out the interest of the finite power property to achieve partial solutions of this problem. We prove that the star problem is decidable in some trace monoid if and only if in the same monoid, it is decidable whether a recognizable language has the finite power property. Intermediary results allow us to give a shorter proof for the decidability of the two previous problems in every trace monoid without C4-submonoid. We also deal with some earlier ideas, conjectures, and questions which have been raised in the research on the star problem and the finite power property, e.g. we show the decidability of these problems for recognizable languages which contain at most one non-connected trace.

Page generated in 0.0774 seconds