271 |
Adsorpciona i emulgujuća svojstva proteinskog izolata i hidrolizata semena tikve (Cucurbita pepo) / Adsorption and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate and hydrolysateBučko Sandra 09 October 2020 (has links)
<p>Seme tikve (Cucurbita pepo) obiluje kako uljem tako i proteinima. Nakon izdvajanja ulja, proteini se koncentrišu u uljanoj pogači, sekundarnom proizvodu procesa proizvodnje ulja, gde njihov sadrţaj dostiţe do 65%. Proteini semena tikve su primamljiv sastojak za prehrambenu, farmaceutsku i kozmetičku industriju zbog svoje farmakološke aktivnosti i visoke biološke vrednosti. Pored toga, budući da su mnogi proizvodi ovih industrija po svojoj koloidnoj prirodi emulzije, proteini semena tikve bi se u njima mogli naći i kao prirodne površinski aktivne materije. Međutim, koloidna funkcionalnost proteina semena tikve se još uvek potcenjuje zbog globularne strukture za koju se vezuju slabija funkcionalna svojstva u odnosu na proteine sa fleksibilnijom strukturom. Prema tome, cilj ove disertacije je ispitivanje funkcionalnih osobina proteinskog izolata semena tikve, pre svega njegovih adsorpcionih i emulgujućih svojstava, kao i ispitivanje uticaja promene proteinske strukture putem enzimske hidrolize na ispitivana svojstva.<br />Pripremljeni su izolat proteina semena tikve (IPST) i dva enzimska hidrolizata, H1 i H2. IPST, H1 i H2 su okarakterisani određivanjem sadržaja vlage, proteina i pepela, zatim, određivanjem prinosa, molekulske mase i zeta potencijala. Ispitan je uticaj koncentracije proteina/peptida (0,0001–1 g/100 cm<sup>3</sup>), pH (3–8) i jonske jačine (0–1 mol/dm<sup>3</sup> NaCl) na rastvorljivost i adsorpciona svojstva: dinamički međupovršinski pritisak (ulje/voda), statički površinski (vazduh/voda) i međupovršinski (ulje/voda) pritisak, kinetiku adsorpcije i dilatacionu reologiju proteinskih adsorpcionih filmova. Nakon toga, ispitan je i uticaj pomenutih parametara na emulziona svojstva IPST, H1 i H2. Emulgujuća svojstva IPST, H1 i H2 su okarakterisana na osnovu prosečnog prečnika kapljica emulzija, raspodele veličina kapljica i stabilnosti emulzija.<br />Utvrđeno je da je prinos IPST veći od prinosa oba hidrolizata za oko 65 %. IPST ima najniţu rastvorljivost na pH=5, što ujedno predstavlja i njegovu izoelektričnu tačku. Enzimskom hidrolizom IPST značajno se povećava rastvorljivost, posebno na pI=5. Povećanje jonske jačine je izazvalo salting–in ili salting–out efekat rastvorljivosti kod svih uzoraka u zavisnosti od pH. IPST, H1 i H2 poseduju površinsku aktivnost pri čemu je površinski/međupovršinski pritisak H1 i H2 manje zavistan od promene pH i jonske jačine u poređenju sa površinskim/međupovršinskim pritiskom IPST. Adsorpcijom na granicu faza IPST i oba hidrolizata obrazuju adsorpcione filmove sa dominantnom elastičnom komponentom. Emulgujuća svojstva IPST, H1 i H2 zavise od koncentracije uzorka, pH vrednosti i jonske jačine kontinualne faze. Pri koncentraciji od 1 g/100 cm<sup>3</sup> i Ic=0 mol/dm<sup>3</sup> pripremljene emulzije su stabilne na svim pH osim emulzije IPST na pH 5. Sve emulzije podležu gravitacionoj nestabilnosti.</p> / <p>Pumpkin (Cucurbita pepo) seed is rich source of both, oil and proteins. Once the oil has been extracted, proteins concentrate in oil cake, a by–product of the oil<br />extraction process, where their content can reach up to 65%. Pumpkin seed proteins are desirable ingredient in food, pharmaceutical and cosmetic industry due to their pharmacological activities and high biological value. Moreover, since many of products of these industries are, in colloidal terms, emulsions, pumpkin seed proteins could serve as surface active materies. However, colloidal functionality of pumpkin seed proteins is still underestimated for their globular structure which entails inferior functional properties to functional properties of proteins with more flexible structure. Based on that, the aim of this dissertation is to investigate functional properties of pumpkin seed protein isolate, adsorption and emulsifying properties, in the first place, and then to investigate the influence of modification of the protein structure, by means of enzymatic hydrolysis, on the aforementioned properties.<br />Pumpkin seed protein isolate, IPST, and two enzymatic hydrolysates, H1 and H2, were prepared. IPST, H1 and H2 were characterized by determination of moisture, ash and protein content, then, by determination of protein recovery, molecular mass and zeta potential. Influence of the protein/peptide concentration (0.0001–1 g/100 cm<sup>3</sup>), pH (3–8) i ionic strength (0–1 mol/dm<sup>3</sup> NaCl) on the solubility and adsorption properties: dynamic interfacial (oil/water) pressure, static surface (air/water) and interfacial (oil/water) pressure, adsorption kinetics and interfacial dilatational properties, was<br />investigated next. In the end, influence of the aforementioned pharameters on the emulsifying properties of IPST, H1 and H2 was investigated. Emulsifying properties of IPST, H1 and H2 were discussed in terms of mean droplet diameter, droplet size distribution and emulsion stability.<br />Protein recovery of IPST was determined to be 65 % higher than recovery of H1 and H2. Solubility of IPST was the lowest at pH 5, what presents the isoelectric point. The enzymatic hydrolysis of IPST significantly increased solubility, especialy at the isoelectric point. Increase in the ionic strenght led to salting–in or salting–out effect depending on pH of the sample. Three investigated samples, IPST, H1 and H2 exhibited surface activity, however, sufrace/interfacial pressure of H1 and H2 were found to be less influenced by change in pH or ionic strenght of the solution in comparison to the IPST. Once adsorbed to the interface IPST and both hydrolysates form interfacial film with dominant elastic component. Emulsifying properties of IPST, H1 and H2 depend on the concentration, pH and ionic strength of the continuous phase. Stabile emulsions were formed at concentration of 1 g/100 cm3 and Ic=0 mol/dm<sup>3</sup> regardless of pH, with the exception of the IPST at pH 5. All emulsions were susceptibile to gravitational separation.</p>
|
272 |
Limited enzymatic hydrolysis of green coffee protein as a technique for preparing new functional food componentsAli, Mostafa, Rawel, Harshadrai, Hellwig, Michael 22 January 2024 (has links)
Valorisation of side-streams in food production has become an important booster for increased sustainability in food production. The objective of this work was to study and improve the functional properties of green coffee (GC) protein. Extraction of defatted GC meal by using PVPP slightly increased protein yield and significantly decreased the amount of covalently and non-covalently bound CQA, therefore decreasing the antioxidant activity of the meal. Peptic hydrolysis at pH 1.5 led to a significantly higher degree of hydrolysis (DH) than at pH 3. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the molecular weights of peptides of GC protein hydrolysates were in the range of 11–60 kDa, while peptides were in the range of 500–5000 Da using matrix-assisted laser desorption/ionization-time of flight mass spectroscopy (MALDI-TOF MS). Additionally, the enzymatic hydrolysis significantly improved the antioxidant activity of the GC protein. Finally, the results suggest that enzymatic hydrolysis with pepsin is an effective technique to provide bioactive compounds. The works presented in our manuscript may help in further exploiting the potential use of green coffee beans for food, cosmetic or pharmaceutical industry.
|
273 |
Modeling and Production of Bioethanol from Mixtures of Cotton Gin Waste and Recycled Paper SludgeShen, Jiacheng 03 February 2009 (has links)
In this study, the hydrolytic kinetics of mixtures of cotton gin waste (CGW) and recycled paper sludge (RPS) at various initial enzyme concentrations of Spezyme AO3117 and Novozymes NS50052 was investigated. The experiments showed that the concentrations of reducing sugars and the conversions of the mixtures increased with increasing initial enzyme concentration. The reducing sugar concentration and conversion of the mixture of 75% CGW and 25% RPS were higher than those of the mixture of 80% CGW and 20% RPS. The conversion of the former could reach 73.8% after a 72-hour hydrolysis at the initial enzyme loading of 17.4 Filter Paper Unit (FPU)/g substrate. A three-parameter kinetic model with convergent property based on enzyme deactivation and its analytical expression were derived. Using nonlinear regression, the parameters of the model were determined from the experimental data of hydrolytic kinetics of the mixtures. Based on this kinetic model of hydrolysis, two profit rate models, representing two kinds of operating modes with and without substrate recycling, were developed. Using the profit rate models, the optimal enzyme loading and hydrolytic time could be predicted for the maximum profit rate in ethanol production according to the costs of enzyme and operation, enzyme loading, and ethanol market price. Simulated results from the models based on the experimental data of hydrolysis of the mixture of 75% CGW and 25% RPS showed that use of a high substrate concentration and an operating mode with feedstock recycle could greatly increase the profit rate of ethanol production. The results also demonstrated that the hydrolysis at a low enzyme loading was economically required for systematic optimization of ethanol production. The development of profit rate model points out a way to optimize a monotonic function with variables, such as enzyme loading and hydrolytic time for the maximum profit rate.
The study also investigated the ethanol production from the steam-exploded mixture of 75 wt% cotton gin waste and 25 wt% recycled paper sludge at various influencing factors, such as enzyme concentration, substrate concentration, and severity factor, by a novel operating mode: semi-simultaneous saccharification and fermentation (SSSF) consisting of a pre-hydrolysis and a simultaneous saccharification and fermentation (SSF). Four cases were studied: 24-hour pre-hydrolysis + 48-hour SSF (SSSF 24), 12-hour pre-hydrolysis + 60-hour SSF (SSSF 12), 72-hour SSF, and 48-hour hydrolysis + 12-hour fermentation (SHF). SSSF 24 produced higher ethanol concentration, yield, and productivity than the other operating modes. The higher temperature of steam explosion favored of ethanol production, but the higher initial enzyme concentration could not increase the final ethanol concentration though the hydrolytic rate of the substrate was increased. A mathematical model of SSSF, which consisted of an enzymatic hydrolysis model and a SSF model including four ordinary differential equations that describe the changes of cellobiose, glucose, microorganism, and ethanol concentrations with respect to residence time, was developed, and was used to simulate the data for the four components in the SSSF processes of ethanol production from the mixture. The model parameters were determined by a MATLAB program based on the batch experimental data of the SSSF. The analysis to the reaction rates of cellobiose, glucose, cell, and ethanol using the model and the parameters from the experiments showed that the conversion of cellulose to cellobiose was a rate-controlling step in the SSSF process of ethanol production from cellulose. / Ph. D.
|
274 |
Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation / Study and functionalization of vegetable proteins and their application in microencapsulationNesterenko, Alla 05 December 2012 (has links)
Les protéines extraites des végétaux sont des matériaux relativement peu coûteux, non toxiques, biocompatibles et biodégradables. Elles représentent une bonne alternative aux protéines d’origine animale et aux polymères dérivés du pétrole. Dans le cadre de cette étude, les protéines extraites de graines de soja et de tournesol ont été utilisées en tant que matériaux enrobants pour la microencapsulation de la matière active hydrophobe (α-tocophérol) ou hydrophile (acide ascorbique) par le procédé d’atomisation. Les protéines de soja sont largement utilisées dans les applications alimentaires et non-alimentaires, notamment en microencapsulation. Elles sont donc étudiées dans ce travail comme matériau enrobant de référence. Les protéines de tournesol n’ont quant à elles pas d’application industrielle concrète, si ce n’est sous la forme de tourteaux dans l’alimentation animale. C’est pourquoi il nous semble pertinent de trouver des nouvelles voies de valorisation pour ce coproduit d’origine agricole. Plusieurs modifications des protéines, telles que l’hydrolyse enzymatique, l’acylation, la réticulation enzymatique et la cationisation ont été étudiées dans le but d’améliorer les propriétés encapsulantes du matériau enrobant. Dans le contexte de la chimie verte, toutes les modifications ont été effectuées sans utilisation de solvants organiques ni de catalyseurs chimiques. L’influence des modifications chimiques et enzymatiques des protéines, et des paramètres du procédé (pression d’homogénéisation, ratio matériau enrobant/matière active et concentration en protéines) sur les différentes caractéristiques des préparations liquides et des microparticules (viscosité, taille des gouttelettes dans le cas des émulsions, morphologie et taille des microparticules), ainsi que sur les paramètres liés au procédé d’atomisation (rendement et efficacité de microencapsulation) a été particulièrement étudiée au cours de ce travail. Les résultats obtenus confirment que l’extrait protéique de tournesol est tout à fait pertinent comme matériau enrobant et permet d’obtenir des efficacités de microencapsulation significativement plus élevées par rapport à celles obtenues avec l’extrait protéique de soja. / Proteins extracted from vegetables are relatively low-cost, non-toxic, biocompatible and biodegradable raw materials. They represent a good alternative to animal-based proteins and petroleum-extracted polymers. In this study, proteins derived from soybean and sunflower seeds were used as wall materials for microencapsulation of hydrophobic (-tocopherol) or hydrophilic (ascorbic acid) active material by spray-drying technique. Soybean proteins are widely used in food and non-food applications, especially in microencapsulation. They were studied in this work as wall material of reference. Sunflower proteins are not actually used in industrial application, but only in the form of oil-cake for animal feeding. That’s why new ways of valorization of this agricultural by-product should be investigated. Several proteins’ modifications such as enzymatic hydrolysis, acylation, cross-linking and cationization were studied in order to improve encapsulating properties of wall material. In the context of green chemistry, all the modifications and preparations were performed without use of organic solvents and chemical catalysts. The effect of protein chemical and enzymatic modifications, and process parameters (homogenization pressure, wall/core ratio and protein concentration) on different characteristics of liquid preparations and microparticles (viscosity, emulsion droplet size, microparticle size and morphology) and on parameters related to the spray-drying process (yield and efficiency of microencapsulation) was particularly investigated in this study. The obtained results confirmed that sunflower proteins are quite suitable as encapsulating agent and provide the microencapsulation efficiencies significantly higher compared to those obtained with soy proteins.
|
275 |
Estudo da hidrólise do óleo de soja catalizada pela enzima lipozyme TL IM / Study of hydrolysis of soy oil catalelized by enzima lipozyme TL IMFocking, Andriele Magarinos 09 March 2017 (has links)
Submitted by Marilene Donadel (marilene.donadel@unioeste.br) on 2017-08-11T14:43:57Z
No. of bitstreams: 2
Andriele Magarinos Focking 2017.pdf: 2481446 bytes, checksum: 763f767d058face92edaaa394dc5b780 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-08-11T14:43:57Z (GMT). No. of bitstreams: 2
Andriele Magarinos Focking 2017.pdf: 2481446 bytes, checksum: 763f767d058face92edaaa394dc5b780 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-09 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The utilization of biodiesel as a substitute for diesel oil is one of the alternatives that aims to minimize the utilization of non-renewable fuels (petroleum) in the world energy matrix. Worldwide, biodiesel production occurs through the transesterification process. In Brazil, the most commonly used raw material for this purpose is soybean oil. A new way that has been promising for the biodiesel production is the Hidroesterification process. With that, the present work a imed to evaluate the soy oil enzymatic hydrolysis, using the comercial enzyme Lipozyme TL IM as the catalyst of the reaction. Was performed hydrolysis test of soy oil in closed and batch system, based on two experimental plannings (Placket-Burmann ad DCCR), to evaluate the effects of the variables involved in the process(pH; temperature; molar fraction water/oil; stirrings peed of the batch reactor and mass fraction enzyme/substrate). Since that, was perfomed kinetic studies with different conditions of molar fraction water/oil and different dosages of catalyst, as well as the utilization of a tip ultrasonic and a chemical agent to evaluateit’s effects on the kinetic of the reaction. To describe the kinetic of enzymatic hydrolysis of soy oil, was used a mathematical model based on the Michaelis-Menten kinetic. The results of experimental planningsindicatedthattheaciditylevelswerefavoredwhenthetemperatureof 52,2ºC, pH 6.1, stirring speed 150 rpm and molar fraction water/oil 37,7:1, getting 82,4% in the value of acidity level. The kinetic studies showed that the utilization of the probe ultrasonic did not accelerated the velocity of the enzymatic hydrolysis reaction. The kinetic involving the utilization of the chemical agent suffered a high decrease in the velocity of reaction, showing that this would be a inhibitor of enzymatic activity of Lipozyme TL IM. By the mathematical model, was verified that the model described well the experimental datas, as
well made able the visualization of others components concentration (triacylglycerols, diacylglycerols, monoacylglycerols, glycerol, free fatty acids and water). It is believed that the values of the constants of the reaction velocity obtained in the model has more physical meaning and could be used to conducting the simulations in anothers conditions. / A utilização do biodiesel como substituto do óleo diesel é uma das alternativas que visa minimizar a utilização de combustíveis não renováveis (petróleo) na matriz energética mundial.Mundialmente, a produção de biodiesel ocorre pelo processo de transesterificação. No Brasil, a matéria-prima mais utilizada para esta finalidade é o óleo de soja. Uma nova rota que se mostra promissora para a produção de biodiesel é o processo de hidroesterificação. Desta maneira, o presente trabalho objetivou avaliar a hidrólise enzimática do óleo de soja, utilizando a enzima comercial Lipozyme TL IM como catalisador da reação. Foram realizados ensaios de hidrólise do óleo de soja em sistema fechado e batelada, baseados em dois planejamentos experimentais (Placket-Burmann e DCCR), visando avaliar os efeitos das variáveis envolvidas no processo (pH; temperatura; razão molar água/óleo; velocidade de agitação no reator batelada e razão mássica enzima/substrato). A partir disto, foram realizados estudos cinéticos com diferentes condições de razão molar água/óleo e diferentes dosagens de catalisador, bem como a utilização de ultrassom de ponta e um agente químico visando avaliar seus efeitos na cinética da reação. Para descrever a cinética da hidrólise enzimática do óleo de soja foi utilizado um modelo matemático baseado na cinética de Michaelis-Menten. Os resultados dos planejamentos experimentais indicaram que o índice de acidez foi favorecido quando temperatura de 52,2ºC, pH 6,1, velocidade de agitação de 150 rpm e razão molar água/óleo 37,7:1, obtendo 82,4% no valor do índice de acidez. Os estudos cinéticos demonstraram que a utilização do ultrassom de sonda não acelerou a velocidade da reação de hidrólise 13 enzimática. A cinética envolvendo a utilização de agente químico sofreu um alto decaimento na velocidade da reação, demonstrando que este seria um inibidor da atividade enzimática da Lipozyme TL IM. Pela modelagem matemática verificou-se que o modelo descreveu bem os dados experimentais, bem como possibilitou a visualização da concentração dos demais componentes (triacilgliceróis, diacilgliceróis, monoacilgliceróis, glicerol,ácidos graxos livreeágua). Acredita-se que os valores das constantes da velocidade de reação obtidos no modelo tenham maior significado físico e possam ser utilizados para realização de simulações em outras condições.
|
276 |
Effect of pretreatment on the breakdown of lignocellulosic matrix in barley straw as feedstock for biofuel production2014 October 1900 (has links)
Lignocellulosic biomass is composed of cellulose, hemicellulose, lignin and extraneous compounds (waxes, fats, gums, starches, alkaloids, resins, tannins, essential oils, silica, carbonates, oxalates, etc). The sugars within the complex carbohydrates (cellulose and hemicellulose) can be accessed for cellulosic bioethanol production through ethanologenic microorganisms. However, the composite nature of lignocellulosic biomass, particularly the lignin portion, presents resistance and recalcitrance to biological and chemical degradation during enzymatic hydrolysis/saccharification and the subsequent fermentation process. This leads to a very low conversion rate, which makes the process uneconomically feasible. Thus, biomass structure requires initial breakdown of the lignocellulosic matrix.
In this study, two types of biomass pretreatment were applied on barley straw grind: radio-frequency (RF)-based dielectric heating technique using alkaline (NaOH) solution as a catalyst and steam explosion pretreatment at low severity factor. The pretreatment was applied on barley straw which was ground in hammer mill with a screen size of 1.6 mm, so as to enhance its accessibility and digestibility by enzymatic reaction during hydrolysis. Three levels of temperature (70, 80, and 90oC), five levels of ratio of biomass to 1% NaOH solution (1:4, 1:5, 1:6, 1:7, & 1:8), 1 h soaking time, and 20 min residence time were used for the radio frequency pretreatment. The following process and material variables were used for the steam explosion pretreatment: temperature (140-180oC), retention time (5-10 min), and 8-50% moisture content (w.b). The effect of both pretreatments was assessed through chemical composition analysis and densification of the pretreated and non-pretreated biomass samples. Results of this investigation show that lignocellulosic biomass absorbed more NaOH than water, because of the hydrophobic nature of lignin, which acts as an external crosslink binder on the biomass matrix and shields the hydrophilic structural carbohydrates (cellulose and hemicellulose). It was observed in the RF pretreatment that the use of NaOH solution and the ratio of biomass to NaOH solution played a major role, while temperature played a lesser role in the breakdown of the lignified matrix, as well as in the production of pellets with good physical quality. The heat provided by the RF is required to assist the alkaline solution in the deconstruction and disaggregation of lignocellulosic biomass matrix. The disruption and deconstruction of the lignified matrix is also associated with the dipole interaction, flip flop rotation, and friction generated between the electromagnetic charges from the RF and the ions and molecules from the NaOH solution and the biomass. The preserved cellulose from the raw sample (non-treated) was higher than that from the RF alkaline pretreated samples because of the initial degradation of the sugars during the pretreatment process. The same observation applies to hemicellulose. This implies that there is a trade-off between the breakdown of the biomass matrix/creating pores in the lignin and enhancing the accessibility and digestibility of the cellulose and hemicellulose. The use of dilute NaOH solution in biomass pretreatment showed that the higher the NaOH concentration, the lower was the acid insoluble lignin and the higher was the solubilized lignin moieties. The ratio of 1:6 at the four temperatures studied was determined to be the optimal. Based on the obtained data, it is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 64% compared to using non-treated biomass. However, the use of NaOH led to an increase in the ash content of biomass. The ash content increased with the decreasing ratio of biomass to NaOH solution. This problem of increased ash content can be addressed by washing the pretreated samples. RF assisted-alkaline pretreatment technique represents an easy to set-up and potentially affordable route for the bio-fuel industry, but this requires further energy analysis and economic validation, so as to investigate the significant high energy consumption during the RF-assisted alkaline pretreatment heating process.
Data showed that in the steam explosion (SE) pretreatment, considerable thermal degradation of the energy potentials (cellulose and hemicellulose) with increasing acid soluble and insoluble lignin content occurred. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. It is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 33% compared to using non-treated biomass.The carbon content of the solid SE product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased.
The RF alkaline and SE treatment combinations that resulted to optimum yield of cellulose and hemicellulose were selected and then enzymatically digested with a combined mixture of cellulase and β-glucosidase enzymes at 50oC for 96 h on a shaking incubator at 250 rev/min. The glucose in the hydrolyzed samples was subsequently quantified. The results obtained confirmed the effectiveness of the pretreatment processes. The average available percentage glucose yield that was released during the enzymatic hydrolysis for bioethanol production ranged from 78-96% for RF-alkaline pretreated and 30-50% for the SE pretreated barley straw depending on the treatment combination. While the non-treated sample has available average percentage glucose yield of just below 12%.
The effects of both pretreatment methods (RF and SE) were further evaluated by pelletizing the pretreated and non-pretreated barley straw samples in a single pelleting unit. The physical characteristics (pellet density, tensile strength, durability rating, and dimensional stability) of the pellets were determined. The lower was the biomass:NaOH solution ratio, the better was the quality of the produced pellets. Washing of the RF-alkaline pretreated samples resulted in pellets with low quality. A biomass:NaOH solution ratio of 1:8 at the three levels of temperature (70, 80, and 90oC) studied are the RF optimum pretreatment conditions. The higher heating value (HHV) and the physical characteristics of the produced pellets increased with increasing temperature and residence time. The steam exploded samples pretreated at higher temperatures (180ºC) and retention time of 10 min resulted into pellets with good physical qualities.
Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) was further applied on the RF alkaline and SE samples in light of the need for rapid and easy quantification of biomass chemical components (cellulose, hemicellulose, and lignin). The results obtained show that the FTIR-PAS spectra can be rapidly used for the analysis and identification of the chemical composition of biofuel feedstock. Predictive models were developed for each of the biomass components in estimating their respective percentage chemical compositions.
|
277 |
Avaliação do potencial de uso de resíduos do processamento de frutas na produção de etanol 2G / Evaluation of the potential use of waste from fruit processing in the production of ethanol 2GSilva, Carlos Eduardo de Farias 26 September 2014 (has links)
The search for other sources of energy has encouraged the development of research and innovation in the production of biofuels, such as the second generation ethanol. Biomass from agricultural residues has advantages such as reuse, solves the disposal problem and also offers a low cost of production. In this context, this paper evaluates the best pretreatment (acid, alkaline and hydrothermal) waste from processing fruits (orange, passion fruit and soursop) to obtain bioethanol. The waste collected, stored at -20°C were thawed at room temperature, sanitized in 100 ppm sodium hypochlorite for 15 min and dried in an oven with air circulation at 55 ± 5°C until constant weight, ground and subsequently on a knife mill type Willye 30 mesh and packed in airtight plastic bottles at room temperature. Determinations of lipid, protein, moisture, ash, fiber, pectin and carbohydrate were performed. Pretreatments were designed according to experimental design where, for the acid, time 15 to 120 min, Cacid from 1 to 5% and Cbiomass 1 to 9%. For the alkali, it was used the same conditions as the acid, changing only the Cbasis, from 0.5 to 2.5%. For the hydrothermal only Cbiomass and time were evaluated. As answers, the mass yield, the amount of total reducing sugars (TRS) and total soluble solids in the liquid fraction. For the enzymatic hydrolysis it was employed cellulase Sigma-Aldrich in a 2:1 by enzyme mL:g pretreated biomass in 60 mL of 50 mM citrate buffer at 50°C and 100 rpm, evaluating the concentration of total reducing sugars. In ethanol fermentation, was used the hydrolyzate complemented with mineral solution and the yeast Saccharomyces cerevisiae, the main responses analyzed were ethanol concentration and yield of fermentation. The waste orange, passion fruit and soursop higher content of sugar in the liquor pretreatment occurred in the acid using low biomass concentration and longer pretreatment (65%), whereas at higher acid concentrations was sugars decreased, probably because undergo degradation. In alkaline pretreatment, was lower than the saccharification acid pretreatment (35%) and lower yields mass, indicating that some component of the lignocellulosic matrix was solubilized lignin probably characteristic of alkaline treatments. In hydrothermal there was the lowest saccharification liquor from both the pretreatment and in the enzymatic hydrolysis, possibly because the time and temperature used were not effective in destroying the lignocellulosic matrix. In enzymatic hydrolysis, alkali was more efficient than the acid, achieving, in the best conditions, around 35% of ART, except for the residue of passion fruit (<10% hydrolysis for the three pre-treatments), suggesting negative relationship between the amount of pectin and action of cellulases. The yield of fermentation behaved differently among trials for obtaining pre-treatment acid with shorter (15 minutes) the highest rates, while for these alkaline and hydrothermal stood in a longer time (120 min) pretreatment. These observations suggest that in the case of residual soursop optimizations must be carried out using lower heating times and higher biomass concentrations. However, for the orange peel and passion fruit residue, the intermediate condition seems to be more appropriate, and more efficient enzyme complexes and the presence of enzymes that break down pectin. / A busca por outras fontes de energia tem incentivado o desenvolvimento de pesquisas e a inovação na produção de biocombustíveis, a exemplo do etanol de segunda geração. A biomassa proveniente de resíduos agroindustriais apresenta como vantagens seu reaproveitamento, resolve o problema de descarte e, também, oferece um baixo custo de produção. Neste contexto, o presente trabalho avalia o melhor pré-tratamento (ácido, alcalino e hidrotérmico) de resíduos do processamento de frutas (laranja, maracujá e graviola) para a obtenção de bioetanol. Os resíduos coletados, armazenados em freezer a -20°C, foram descongelados à temperatura ambiente, sanitizados em hipoclorito de sódio 100 ppm por 15 min e secos em estufa de recirculação de ar a 55±5°C até peso constante, sendo posteriormente triturados em um moinho de facas do tipo Willye a 30 mesh e acondicionados em frascos plásticos herméticos à temperatura ambiente. Foram realizadas determinações de lipídios, proteínas, umidade, cinzas, fibra, pectina e carboidratos totais. Os pré-tratamentos foram idealizados de acordo com delineamentos experimentais, sendo para o ácido, tempo de 15 a 120 min, Cácido de 1 a 5% e Cbiomassa de 1 a 9%. Para o alcalino, utilizaram-se as mesmas condições do ácido, mudando apenas a Cbase, de 0,5 a 2,5%. Para o hidrotérmico, somente os tempos e Cbiomassa foram avaliados. Como respostas, o rendimento mássico, a quantidade de açúcares redutores totais (ART) e sólidos solúveis totais na fração líquida. Para a hidrólise enzimática, empregou-se celulase Sigma-Aldrich® na proporção 2:1, em mL enzima:g biomassa pré-tratada em 60 mL de tampão citrato 50 mM a 50°C e 100 rpm, avaliando-se a concentração de açúcares redutores totais. Na fermentação etanólica, empregou-se o hidrolisado, solução mineral e a levedura Saccharomyces cerevisiae, tendo como principais respostas a concentração de etanol e o rendimento da fermentação. Nos resíduos de laranja, graviola e maracujá as maiores sacarificações no licor do pré-tratamento ocorreram no ácido, utilizando-se menor concentração de biomassa e maior tempo de pré-tratamento (65%), ao passo que nas concentrações mais elevadas de ácido houve uma diminuição de açúcares, provavelmente porque sofreram degradação. No pré-tratamento alcalino, houve menor sacarificação que o ácido (35%) e menor rendimento mássico, indicando que algum componente da matriz lignocelulósica foi solubilizado, provavelmente a lignina, característica de tratamentos alcalinos. No hidrotérmico, houve a menor sacarificação tanto no licor do pré-tratamento quanto na hidrólise enzimática, possivelmente porque o tempo e temperatura usados não foram eficientes na destruição da matriz lignocelulósica. Na hidrólise enzimática, o alcalino foi mais eficiente que o ácido, conseguindo-se, nas melhores condições, em torno de 35% de ART, à exceção do resíduo do maracujá (< 10% de hidrólise para os três pré-tratamentos), sugerindo relação negativa entre quantidade de pectina e ação das celulases. O rendimento de fermentação se comportou de modo diverso entre os ensaios, obtendo-se para o pré-tratamento ácido com menor tempo (15 min) as maiores taxas, enquanto que para o alcalino e o hidrotérmico estas se situaram em um maior tempo (120 min) de pré-tratamento. Essas observações sugerem que, no caso do resíduo de graviola, as otimizações devem ser realizadas empregando menores tempos de aquecimento e maiores concentrações de biomassa. Entretanto, para o bagaço de laranja e resíduo de maracujá, a condição intermediária parece ser mais adequada, além de complexos enzimáticos mais eficientes e com a presença de enzimas que quebrem a pectina.
|
278 |
PRODUÇÃO DE ENZIMAS CELULOLÍTICAS DE Trichoderma reesei POR FERMENTAÇÃO EM ESTADO SÓLIDO E SUA APLICAÇÃO NA SACARIFICAÇÃO DE RESÍDUOS AGROINDUSTRIAIS LIGNOCELULÓSICOS / PRODUCTION OF CELLULOLYTIC ENZYMES FROM Trichoderma reesei BY SOLID STATE FERMENTATION AND ITS USE IN THE SACHARIFICATION OF LIGNOCELLULOSIC RESIDUESGasparotto, Juliana Machado 18 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Sugarcane bagasse is an abundant lignocellulosic residue in traditional regions of sugar and ethanol production in Brazil. It is not only a potential substrate for second generation ethanol production but also have structural features to be classified as good inducer for cellulases production by microorganisms. However, the high cost of cellulases industrial production is the major bottleneck in the hydrolysis of this raw material for subsequent fermentation, which makes unfeasible in large scale the ethanol production using this process. In this context, the development of more efficient and less expensive fermentation processes for industrial cellulases production, as well as better alternatives of enzymatic hydrolysis of lignocellulosic material is crucial to achieve economic feasibility in this process. For this purpose, this work aims to develop a cellulase production process using Trichoderma reesei, as well as assessing the use of produced enzymatic extract in sugarcane bagasse hydrolysis, in order to evaluate the ultrasound effects in the hydrolysis process. The optimized process of cellulases production consisted in five days of grow in pre-inoculum Petri dishes, followed by two days of grow in optimized liquid medium and four days of solid state fermentation, using sugarcane bagasse supplemented with 1% of soybean bran and 15% (v/w) of corn steep liquor as substrate, moisture of 65%, 28±1°C and 0.5 mL of inoculum per gram of substrate. This experimental condition in bench scale (5 g) resulted in a production of 1.4 FPU/g of cellulases, and the production was approximately three-fold high in a fixed-bed bioreactor with forced aeration for 70 g of substrate capacity. For ultrasound assisted enzymatic hydrolysis using an ultrasound bath, the condition that achieved higher efficiencies were 43.4±2°C and 18.5% (v/v) of enzyme concentration, resulting in a maximal hydrolysis efficiency of 229 grams of reducing sugar per kilogram of used substrate, achieving an average increase of 12% in efficiency in those experiments where the hydrolysis was assisted by ultrasound compared with those without sonication. Regarding the saccharification using the ultrasonic probe, results using the indirect sonication during process were, on average, 158% higher than those using the direct sonication. Thus, it can be concluded that indirect sonication is more suitable to be used as an auxiliary in the hydrolysis, since the direct sonication can cause denaturation of the enzyme, reducing the process efficiency. / O bagaço de cana-de-açúcar (BC) é um resíduo lignocelulósico abundante em regiões sucroalcooleiras no Brasil e é um potencial substrato para produção de etanol de segunda geração, além de possuir características estruturais que o classificam como bom indutor para produção de celulases por microrganismos. O alto custo da produção industrial de celulases, no entanto, é um grande empecilho na hidrólise desse tipo de material para posterior fermentação, o que inviabiliza a utilização desse processo na produção de etanol em larga escala. Nesse contexto, o desenvolvimento de processos de fermentação mais eficientes e de menor custo para a produção de celulases em escala industrial, bem como alternativas mais eficazes de hidrólise enzimática desse material são necessários a fim de viabilizar economicamente o processo. Para essa finalidade, esse trabalho tem como proposta o desenvolvimento de um processo para produção de celulases utilizando uma cepa do fungo filamentoso Trichoderma reesei, bem como a utilização do extrato enzimático produzido na hidrólise enzimática de bagaço a fim de avaliar os efeitos do ultrassom no processo. O processo otimizado de produção das celulases consistiu em cinco dias de crescimento do pré-inóculo em placas de Petri, seguido de dois dias de crescimento em meio líquido otimizado, e quatro dias de FES de BC suplementado com 1% de farelo de soja (FS) e 15% de água de maceração de milho (AMM), 65% de umidade, 28±1°C e densidade de 0,5 mililitros de inóculo por grama de substrato. Essa condição experimental em escala de bancada (5 g) resultou em uma produção de 1,4 FPU/g, valor esse que aumentou aproximadamente três vezes com o aumento de escala de produção em um biorreator de leito fixo com aeração forçada com capacidade para 70 g de substrato. Para hidrólise enzimática assistida por banho de ultrassom, a condição que atingiu melhores eficiências foi de 43,4±2°C e 18,5% (v/v) de concentração de enzima, atingindo um máximo de 229 gramas de açúcares redutores por quilograma de substrato utilizado, e foi observado um aumento médio de 12% na eficiência de hidrólise naqueles experimentos em que a hidrólise foi assistida por ultrassom. Já nas sacarificações utilizando a sonda ultrassônica, os resultados utilizando sonicação indireta durante a sacarificação foram, em média, 158% maiores que aqueles utilizando sonicação direta. Dessa forma, conclui-se que a utilização de sonicação indireta é mais indicada como auxiliar nas hidrólises, uma vez que a sonicação direta pode causar desnaturação da enzima e diminuir a eficiência do processo.
|
279 |
HIDRÓLISE ÁCIDA E ENZIMÁTICA DE CASCA DE ARROZ USANDO TECNOLOGIAS ALTERNATIVAS / ACID AND ENZYMATIC HYDROLYSIS OF RICE HULLS USING ALTERNATIVE TECHNOLOGIESMoscon, Jéssica Machado 31 March 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Rice husk is a fairly abundant agro-industrial waste in the state of Rio Grande do Sul, hence the same has been suggested and studied to be used as in lignocellulosic hydrolysis to produce fermentable sugars material. However, processes of hydrolysis in most cases are more expensive and impractical. In this context, this work aimed to study which evaluated acid and enzymatic hydrolysis of rice hulls to obtain fermentable sugars using some alternative technologies such as ultrasound and supercritical CO2 to increase the yields of sugars. In the acid hydrolysis, the yields obtained at optimized conditions were 113.0 and 162.0 g.kg-1 for conventional and ultrasound-assisted hydrolysis, where the yield obtained by ultrasound-assisted hydrolysis was around 43% higher than for the conventional hydrolysis. In the enzymatic hydrolysis, it was evaluated the use of supercritical CO2 as co-solvent and ultrasound-assisted hydrolysis and the results were compared with conventional procedure. Maximum yield of fermentable sugar obtained was about 16 g.kg-1using conventional or ultrasound-assisted hydrolyses. The yield obtained in the hydrolysis using supercritical CO2 as co-solvent was around 4.2 g.kg-1. Enzymatic hydrolysis using conventional procedure showed to be the best alternative to obtain fermentable sugar from rice hulls since the innovative technologies employed did not lead to better results. For acid hydrolysis, it was possible to obtain high yield using less acid and low temperature, in a manner that ultrasound can be used as a device for process intensification. / A casca de arroz é um resíduo agroindustrial bastante abundante no estado do Rio Grande do Sul, deste modo à mesma vem sendo sugerida e estudada para ser usada como material lignocelulósico em hidrólises para a produção de açúcares fermentescíveis. Entretanto, processos de hidrólises na maioria das vezes não possuem um alto rendimento o que torna o processo ainda mais caro e inviável. Dentro desse contexto o presente trabalho teve o intuito de realizar um estudo onde avaliou hidrólise ácida e enzimática da casca de arroz para a obtenção de açúcares fermentescíveis utilizando algumas tecnologias alternativas, como o banho de ultrassom e CO2 supercrítico para aumentar os rendimentos de açúcares. Os ensaios foram realizados em diferentes condições de temperatura, concentrações de ácido e umidade, pressão e concentrações de enzima do meio. Na hidrólise acida convencional obteve-se um rendimento de 113,0 g.kg-1 e na hidrólise ácida assistida por ultrassom o rendimento foi de 162,0 g.kg-1, com base nesses resultados dos rendimentos de açúcares foi possível concluir que o uso do ultrassom intensificou o processo ocorrendo um aumento do rendimento em cerca de 43% quando comparado com o rendimento de açúcares fermentescíveis da hidrólise convencional. Já na hidrólise enzimática utilizando o CO2 Supercrítico o rendimento foi de 4.2 g.kg-1 enquanto que o rendimento da hidrólise enzimática convencional e assistida por ultrassom foi de 16 g.kg-1, neste caso o uso do CO2 supercrítico não foi uma alternativa promissora, uma vez que a mesma causou uma desnaturação das enzimas causando uma diminuição na eficiência do processo.
|
280 |
Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive controlFurlong, Vitor Badiale 20 March 2015 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-21T13:52:44Z
No. of bitstreams: 1
DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:23:48Z (GMT) No. of bitstreams: 1
DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:24:01Z (GMT) No. of bitstreams: 1
DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Made available in DSpace on 2016-09-23T18:24:10Z (GMT). No. of bitstreams: 1
DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5)
Previous issue date: 2015-03-20 / Não recebi financiamento / The continuous demand growth for liquid fuels, alongside with the decrease of fossil oil reserves, unavoidable in the long term, induces investigations for new energy sources. A possible alternative is the use of bioethanol, produced by renewable resources such as sugarcane bagasse. Two thirds of the cultivated sugarcane biomass are sugarcane bagasse and leaves, not fermentable when the current, first-generation (1G) process is used. A great interest has been given to techniques capable of utilizing the carbohydrates from this material. Among them, production of second generation (2G) ethanol is a
possible alternative. 2G ethanol requires two additional operations: a pretreatment and a hydrolysis stage. Regarding the hydrolysis, the dominant technical solution has been based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To ensure the feasibility of the process, a high final concentration of glucose after the enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the reactor is necessary. However, a high load of solids generates a series of operational difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible solution is using a fed-batch process, with feeding profiles of enzymes and substrate that
enhance in the process yield and productivity. The main objective of this work was to implement and test a system to infer online concentrations of fermentable carbohydrates in the reactive system, and to optimize the feeding strategy of substrate and/or enzymatic complex, according to a model-based control strategy. Batch and fed-batch experiments were conducted in order to test the adherence of four simplified kinetic models. The model with best adherence to the experimental data (a modified Michaelis-Mentem model with inhibition by the product) was used to train an Artificial Neural Network (ANN) as a softsensor to predict glucose concentrations. Further, this ANN may be used in a closedloop
control strategy. A feeding profile optimizer was implemented, based on the optimal control approach. The ANN was capable of inferring the product concentration from the available data with good adherence (Determination Coefficient of 0.972). The optimization algorithm generated profiles that increased a process performance index while maintaining operational levels within the reactor, reaching glucose concentrations close to those utilized in current first generation technology a (ranging between 156.0 g.L⁻¹ and 168.3 g.L⁻¹). However rough estimates for scaling up the reactor to industrial dimensions indicate that this conventional reactor design must be replaced by a two-stage reactor, to
minimize the volume of liquid to be stirred. / A crescente demanda por combustíveis líquidos, bem como a diminuição das reservas de petróleo, inevitáveis a longo prazo, induzem pesquisas por novas fontes de energia. Uma possível solução é o uso do bioetanol, produzido de resíduos, como o bagaço de cana-deaçúcar. Dois terços da biomassa cultivada são bagaço e folhas. Estas frações não são fermentescíveis quando se usa a tecnologia de primeira geração atual (1G). Um grande interesse vem sendo prestado a técnicas capazes de utilizar os carboidratos deste material. Dentre elas, a produção de etanol de segunda geração (2G) é uma possível
alternativa. Etanol 2G requer duas operações adicionais: etapas de pré-tratamento e hidrólise. Considerando a hidrólise, a técnica dominante tem sido a utilização de complexos enzimáticos para hidrolisar o substrato lignocelulósico. Para assegurar a
viabilidade do processo, uma alta concentração final de glicose é necessária ao final do processo. Para atingir esse objetivo, uma alta concentração de sólidos no reator é necessária. No entanto, uma carga grande de sólidos gera uma série de dificuldades operacionais para o processo. Este é um gargalo crucial do processo 2G. Uma possível solução é utilizar um processo de batelada alimentada, com perfis de alimentação de enzima e substrato para aumentar produtividade e rendimento. O principal objetivo deste trabalho é implementar e testar um sistema para inferir concentração de carboidratos
fermentescíveis automaticamente e otimizar a política de substrato e/ou enzima em tempo real, de acordo com uma estratégia de controle baseada em modelo cinético. Experimentos de batelada e batelada alimentada foram realizados a fim de testar a
aderência de 4 modelos cinéticos simplificados. O modelo com melhor aderência aos dados experimentais (um modelo de Michaelis-Mentem modificado com inibição por produto) foi utilizado para gerar dados a fim de treinar uma rede neural artificial para predizer concentrações de glicose automaticamente. Em estudos futuros, esta rede pode ser utilizada para compor o fechamento da malha de controle. Um otimizador de perfil de alimentação foi implementado, este foi baseado em uma abordagem de controle ótimo. A rede neural foi capaz de predizer a concentração de produto com os dados disponíveis de
maneira satisfatória (Coeficiente de Determinação de 0.972). O algoritmo de otimização gerou perfis que aumentaram a performance do processo enquanto manteve as condições da hidrólise dentro de níveis operacionais, e gerou concentrações de glicose próximas as obtidas pelo caldo de cana-de-açúcar da primeira geração (valores entre 156.0 g.L ¹ e 168.3 g.L ¹). No entanto, estimativas iniciais de ⁻ ⁻ aumento de escala do processo demonstraram que para atingir dimensões industriais o projeto do reator utilizado deve ser analisado, substituindo o mesmo por um processo em dois estágios para diminuir o volume do reator e energia para agitação.
|
Page generated in 0.069 seconds