1 |
Spectral resource optimization for MU-MIMO systems with partial frequency bandwidth overlay / Optimisation de la ressource spectrale pour les systèmes MU-MIMO avec recouvrement fréquentiel partielFu, Hua 22 May 2015 (has links)
Pour les prochaines générations de systèmes de communications sans fil, un défi majeur est de poursuivre l'augmentation de l' efficacité spectrale de ces systèmes pour satisfaire la montée croissante des demandes en débit, tout en revoyant à la baisse la consommation énergétique des équipements et répondre ainsi aux objectifs des ''communications vertes’’. L'une des stratégies permettant de traiter ce problème sont les communications multiantennes multi-utilisateurs (MU-MIMO), notamment lorsque le nombre d'antennes devient très grand (Massive MIMO). Il est alors possible d'adresser de multiples utilisateurs simultanément grâce à une opération linéaire de précodage spatial. Le but de cette thèse consiste à optimiser l’efficacité spectrale des systèmes MU-MIMO dans le cas d'un nombre d'antennes qui reste modéré, et une consommation énergétique faible. Nous avons donc étudié les techniques de précodage à haute efficacité énergétique basées sur la notion de filtre adapté au canal, tels que la technique MRT (maximum ratio transmission), EGT (equal gain transmission) et TR (time reversal). Notre travail s'est concentré sur l’analyse théorique des performances de ces techniques. Nous avons de plus introduit un nouveau schéma de transmission, nommé PFBO (partial frequency bandwidth overlay), visant à améliorer l’efficacité spectrale des systèmes MU-MIMO à faible nombre d'antennes et pour de faibles niveaux de rapports signal à bruit (SNR). Dans une première partie, nous avons étudié l'efficacité spectrale du schéma PFBO dans le cas de transmissions mono-porteuses et multi-porteuses. Les taux de recouvrement optimaux fournissant une capacité système maximale dans le cas de transmissions MISO et MIMO à deux utilisateurs ont été identifiés. Puis l'étude a été étendue aux cas MU-MIMO avec un nombre arbitraire d'utilisateurs. Nous avons modélisé précisément le comportement du canal équivalent après précodage, en utilisant respectivement les techniques EGT, TR et MRT. De nouvelles bornes de capacité non disponibles dans la littérature ont alors été obtenues et ont montré une précision satisfaisante. Dans la deuxième partie, le taux d'erreur binaire pour le schéma PFBO a été étudié sur canal plat et canal de Rayleigh. Les expressions du taux d'erreurs binaires ont été obtenues. En particulier, nous avons proposé un modèle statistique pour rendre compte du comportement du canal après précodage ainsi que de l'interférence inter-utilisateur. Une première proposition de modèle a été introduite pour les systèmes EGTMIMO à deux utilisateurs utilisant une modulation BPSK. Ce modèle a été également validé dans le cas d'une modulation QPSK ou pour de multiples utilisateurs. Dans la dernière partie, nous avons combiné le principe du schéma PFBO aux systèmes OFDM à spectre étalé (SSOFDM). Nous avons analysé les performances théoriques de ce système sur canal plat et canal de Rayleigh. Les expressions de taux d'erreurs binaires ont été établies et validées par simulations. Nous avons alors pu montrer que la composante SS permettait d'améliorer les performances du schéma PFBO lorsque le taux de recouvrement restait modéré. / For the next generations of wireless communication systems, getting higher spectral efficiencies is remaining a big challenge to answer the explosively increasing demand of throughput. Meanwhile, the energy consumption of equipments and the transmitting power density have to be reduced to achieve the objective of ‘’green communications’’. One of the most promising strategies to deal with such issues is using multi-user multiple-input multiple-output (MU-MIMO) schemes, namely for large-scale antenna systems. It becomes then possible to simultaneously serve multiple simple device users using linear spatial precoding techniques. The objective of this thesis is to optimize the spectral efficiency of MU-MIMO systems in the context of moderate-scale antenna arrays and low energy consumption. Hence, we studied different high-energy efficiency precoding techniques based on matched filtering approach, such as maximum ratio transmission (MRT), equal gain transmission (EGT) and time reversal (TR). We were interested in the theoretical performance analysis of these techniques. In addition, we introduced a scheme based on partial frequency bandwidth overlay (PFBO) to improve and adapt the spectral efficiency of a MU-MIMO system at low signal to noise ratio (SNR) regime. In a first part, we studied the spectral efficiency of the proposed PFBO scheme with both single-carrier and multi-carrier modulations. We identified the optimal bandwidth overlap ratios that provide the maximum achievable rate for two-user SIMO and MIMO systems. Then the study was extended to a more general MU-MIMO case with an arbitrary number of users. We precisely modeled the channel behavior after precoding when using EGT, TR and MRT techniques. New closed-form capacity lower bounds not available in the literature were then obtained and shown to be satisfactory accurate. In the second part, the bit error rate (BER) performance of PFBO scheme was studied for both flat fading channels and theoretical Rayleigh channels. Closed-form BER equations were obtained. Particularly, we proposed a statistical model to reflect the behavior of the non-flat fading channel after precoding and to take into account the correlated interference terms that occur in a two-user EGT-MIMO system using BPSK modulation. This model was also validated in case of QPSK modulation and with more users. In the last part, we proposed to combine our PFBO principle with spread-spectrum OFDM techniques (SS-OFDM). We analyzed the theoretical BER performance of such a scheme using flat fading channels and theoretical Rayleigh channels. New closed-form BER approximation equations were then established and compared through simulations. Eventually, we showed that the SS component of the proposed system provides performance gains that depend on the overlap ratio used in the PFBO scheme.
|
Page generated in 0.1276 seconds