• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

REPRESENTATIONS DE GROUPES TOPOLOGIQUES ET ETUDE SPECTRALE D'OPERATEURS DE DECALAGE UNILATERAUX ET BILATERAUX

Dubernet, Sébastien 15 December 2005 (has links) (PDF)
Dans un premier temps, nous étudions la continuité d'une <br />représentation $\theta$ du groupe topologique $G$ dans une algèbre de Banach $A$ en fonction du comportement de $\limsup_{u \rightarrow 1}\| \theta(u)-I \|$, où $1$ désigne l'élément unité de $G$ et $I$ celui de $A$. Nous obtenons aussi des résultats de continuité automatique pour une large catégorie de représentations de groupes. <br /><br />Nous étudions ensuite, dans des cas concrets le spectre de l'opérateur $S_M: E/M \rightarrow E/M$ défini par $S(f+M)=Sf +M$, c'est-à-dire la compression de $S$ à $E/M$ où $E$ est un espace de Banach, $S:E \rightarrow E$ un opérateur borné et $M$ un sous-espace vectoriel fermé invariant par $S$, c'est-à-dire vérifiant $S(M) \subset M$. D'abord nous nous plaçons dans des espaces de Banach $E$ de fonctions analytiques sur le disque unité pour lesquels le shift usuel $S:z \mapsto zf$ et le shift arrière $T: f \mapsto \frac{f-f(0)}{z}$ ont leur spectre égal au cercle unité et vérifient la condition de non-quasianalyticité. Nous montrons que si $f \in M$ admet une extension analytique à $\D \cup D(\zeta,r)$, avec $|\zeta|=1$, $f(\zeta)\neq 0$, alors $\zeta \notin Spec(S_M)$. Nous appliquons ce résultat à l'espace de Hardy pondéré $H_{\sigma_{\alpha}}(\D)$, avec $\sigma_{\alpha}(n)=e^{-n^{\alpha}}$, $n \geq 0$, $\alpha \in (\frac{1}{2},1)$.<br /><br />Enfin nous étudions une situation quasianalytique, celle des espaces $l^2(w,\Z)$ à poids "$\log$-impairs". Soit $L$ un arc fermé non vide du cercle unité; nous montrons que la construction de Y.Domar de sous-espaces invariants par translations pour les espaces $l^2(w,\Z)$ vérifiant une condition naturelle de régularité, permet d'obtenir des sous-espaces $M_L$ tels que $Spec (S_{M_L})=L$, où $S: (u_n)_{n \in \Z} \mapsto (u_{n-1})_{n \in \Z}$ désigne le shift bilatéral usuel sur $l^2(w,\Z)$.

Page generated in 0.115 seconds