• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem baseada em agrupamento nebuloso evolutivo de máxima verossimilhança aplicada a sistemas dinâmicos operando em ambiente não-estacionário / Modeling based on evolutionary nebulous clustering of maximum likelihood applied to dynamic systems operating in non-stationary environment

ROCHA FILHO, Orlando Donato 24 April 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-09-04T18:35:15Z No. of bitstreams: 1 OrlandoRochaFilho.pdf: 10104010 bytes, checksum: 7c750a6e03597fc2e7f7474b62c35a46 (MD5) / Made available in DSpace on 2017-09-04T18:35:15Z (GMT). No. of bitstreams: 1 OrlandoRochaFilho.pdf: 10104010 bytes, checksum: 7c750a6e03597fc2e7f7474b62c35a46 (MD5) Previous issue date: 2017-04-24 / This thesis presents a maximum likelihood based modeling approach applied to dynamic systems operating in non-stationary environment that uses recursive parametric estimation based on the method of fuzzy instrumental variable. The context is evolving and the idea is to guarantee a robust for estimation of the parameters of noise-corrupted experimental data. The methodology consists of an evolving fuzzy clustering algorithm based on the similarity of the data which employs an adaptive distance norm based on the maximum likelihood criterion that use an adaptive search strategy on the experiment in order to avoid the curse of dimensionality related to the number of rules created during data clustering of the data set. The computational and experimental results to exemplify the proposed methodology are: statistical analysis of the fuzzy instrumental variable inserted in the evolving context; black box modeling of a thermal plant; identification of a benchmark nonlinear system widely published in the literature and the black box modeling of a 2DOF helicopter. These examples are used to illustrate the performance and efficiency by operating in a non–stationary environment. / Nesta tese é apresentada uma proposta de modelagem baseada máxima verossimilhança aplicada a sistemas dinâmicos operando em ambiente não-estacionário que utiliza a estima- ção paramétrica recursiva baseada no método de variável instrumental nebulosa, inserido no contexto evolutivo, no sentido de garantir robustez para estimação dos parâmetros diante de dados experimentais corrompidos por ruído. A metodologia é composta por um algoritmo de agrupamento nebuloso evolutivo baseado na similaridade dos dados que emprega uma norma de distância adaptativa baseada no critério de máxima verossimilhança que utiliza uma estratégia de busca adaptativa no experimento para evitar o problema da maldição de dimensionalidade relacionada ao número de regras criadas durante o agrupamento do conjunto de dados. Os resultados computacionais e experimentais para exemplificação da metodologia proposta são: análise estatística da variável instrumental nebulosa inserida no contexto evolutivo; na modelagem caixa preta de uma planta térmica (processo térmico); identificação de um sistema não-linear amplamente divulgado na literatura e a modelagem caixa preta de um helicóptero com dois graus de liberdade que ilustra o desempenho e a eficiência operando ambiente não-estacionário.

Page generated in 0.1234 seconds