1 |
The Autoradiographic Localization of Estrogen Binding Sites in Human Mammary LesionsBuell, Richard H. January 1984 (has links)
No description available.
|
2 |
The identification and characterization of three distinct estrogen receptor subtypes in a teleost fish, the Atlantic croaker (Micropogonias undulatus)Hawkins, Mary Beth 28 August 2008 (has links)
Not available / text
|
3 |
Oestrogen receptor subtypes in ovarian cancerWei, Na, 魏娜 January 2008 (has links)
published_or_final_version / abstract / Obstetrics and Gynaecology / Master / Master of Philosophy
|
4 |
Genomic approaches to understanding oestrogen receptor alpha biologyRoss-Innes, Caryn Sarah January 2011 (has links)
No description available.
|
5 |
Physiological factors affecting ovine uterine estrogen and progesterone receptor concentrationsPrater, Patrice L. 14 November 1990 (has links)
Two experiments were conducted to determine whether in
ewes uterine concentrations of estrogen and progesterone
receptors are affected by the presence of a conceptus or by
the hormonal milieu associated with extremes in photoperiod
to which ewes are exposed.
In Exp.1, nine mature ewes were unilaterally
ovariectomized by removing an ovary bearing the corpus luteum
(CL). The ipsilateral uterine horn was ligated at the
external bifurcation and a portion of the anterior ipsilateral
uterine horn was removed and assayed for endometrial nuclear
and cytosolic concentrations of estrogen receptor (ER) and
progesterone receptor (PR) by exchange assays. After a
recovery estrous cycle, ewes were bred to a fertile ram. On
day 18 of gestation a 10 ml jugular blood sample was collected
for measurement of serum concentrations of estradiol -17β (E₂)
and progesterone by radioimmunoassay. Ewes were
relaparotomized on day 18 and the remaining uterine tissue was
removed. Endometrium from both the pregnant and nonpregnant
uterine horn was assayed for nuclear and cytosolic ER and PR
concentrations. Nuclear and cytosolic ER concentrations on
day 10 of the cycle were greater than in endometrium of gravid
and nongravid uterine horns on day 18 of gestation (p<.01).
Endometrial nuclear PR levels were also greater on day 10 of
the cycle than in the pregnant (p<.05) and nonpregnant horn
(p<.01) on day 18 of gestation. There were no differences in
nuclear and cytosolic ER and PR concentrations between the
pregnant and nonpregnant uterine horn on day 18. Serum levels
of E₂ and progesterone on day 18 of gestation were 16.56 ±
2.43 pg/ml and 1.74 ± 0.57 ng/ml, respectively. These data
suggest that duration of exposure of the uterus to
progesterone and(or) the presence of the conceptus causes a
reduction in uterine concentrations of ER and PR. Further,
an effect of the conceptus, if any, is exerted via a systemic
route.
In Exp. 2, ten mature ewes were bilaterally
ovariectomized in early October. During the onset of the
winter solstice (late December), a 10 ml blood sample was
collected from five ewes for analysis of serum levels of E₂
and progesterone. Ewes were then laparotomized and
approximately one-third to one-half of a uterine horn was
removed and assayed for endometrial nuclear and cytosolic ER.
The contralateral horn was ligated at the external bifurcation
and 10 μg of E₂ in 3 ml of physiological saline was injected
into the uterine lumen of the ligated horn. After 48 h, a
jugular blood sample was collected for steroid analysis and
a section of the E₂ treated horn was removed and assayed for
endometrial cytosolic and nuclear ER. This procedure was
repeated on the remaining five ewes during the height of the
summer solstice (late June). Endometrial nuclear and
cytosolic concentrations of ER prior to and after exogenous
E₂ stimulation were similar during the winter and summer
solstice (p>.05). However, treatment with E₂ increased
endometrial nuclear and cytosolic concentrations of ER
compared with those of the nonstimulated uterine horn during
the winter and summer solstice (p<.05 for each). Serum levels
of E₂ prior to luminal treatment of ewes with E₂ during the
winter and summer solstice did not differ (16.55 ± 4.05 vs
16.00 ± 3.0 pg/ml, respectively, p>.05). Serum levels of E₂
48 h after administration of E₂ did not differ among ewes at
the winter and summer solstice (18.75 ± 2.4 vs 18.65 ± 1.65
pg/ml, respectively, p>.05). Serum levels of progesterone
were basal (<0.10 ng/ml) and did not differ in ewes prior to
and after E₂ treatment at the winter and summer solstice
(p>.05). These data indicate that physiological factors
and(or) hormones such as prolactin and melatonin secreted in
response to extremes in photoperiod do not appear to influence
uterine concentrations of ER in ovariectomized ewes. / Graduation date: 1991
|
6 |
Dynamics of oestrogen receptor regulation in breast cancerMohammed, Hisham January 2014 (has links)
No description available.
|
7 |
Changes in adipose tissue mRNA expression due to perinatal exposure to bisphenol A in ratsChen, Gunilla January 2014 (has links)
Bisphenol A (BPA) is an estrogen receptor binding chemical, widely used in the plastics industry, and as such commonly encountered from plastic containers etc. Even at very low doses, BPA is believed to induce obesity and to have various endocrine disruptive effects. The purpose of this study was to determine possible gene expression changes in gonadal and inguinal adipose tissue from rats perinatally exposed to BPA. The method used was quantitative real-time PCR, and genes found to be up-regulated were PLZF, adiponectin, RXRa and Tcf21, while down-regulated genes were PPARγ, Tmem26, EsR1, Resistin, LPL, Chemerin, Serpina6, TFAM and Ahr. This is so far largely unsupported by other studies, and more research is needed.
|
8 |
Bone mass in Chinese women around the menopause: the role of estrogen receptor beta gene polymorphisms andenvironmental risk factorsGu, Jing, 谷靜 January 2006 (has links)
published_or_final_version / abstract / Medicine / Master / Master of Philosophy
|
9 |
The role of estrogen receptor alpha & beta polymorphisms in osteoporosisLai, Ming-hei., 賴銘曦. January 2007 (has links)
published_or_final_version / Medicine / Master / Master of Research in Medicine
|
10 |
Distribution of estrogen and progesterone receptors in the primate ovary, with emphasis on subpopulations of cells within the corpus luteum.Hild-Petito, Sheri Ann. January 1988 (has links)
Both estradiol and progeterone are proposed autocrine or paracrine regulators of ovarian function in primate species. However, specific receptors for these steroids have not been localized to individual compartments of the primate ovary. Using immunocytochemical techniques, estradiol receptors were detected in the germinal epithelium, but not other structures, of ovaries obtained from rhesus or cynomolgus monkeys during the follicular and luteal phases of the menstrual cycle. In contrast, progesterone receptors were present in stromal and interstitial tissue, the thecal layers of healthy and atretic follicles, as well as the functional corpus luteum. These results are consistent with the concept of a receptor-mediated role for progesterone, but not estrogen, within the predominant gametogenic and endocrine structures, e.g., the follicle and corpus luteum, of the primate ovary. The recent discovery of distinct cell types in the corpus luteum of domestic ungulates has revised concepts on the control of luteal function in these species. Studies were designed to test the hypothesis that the primate corpus luteum consists of cell subpopulations that differ in physical characteristics, function and regulation. Cells enzymatically-dispersed from the monkey corpus luteum at mid-luteal phase of the menstrual cycle differed in size (diameter) and the presence of the steroidogenic enzyme, 3β-hydroxysteroid dehydrogenase (3β-HSD). Analysis of dispersed cells for forward and 90° light scatter properties by flow cytometry revealed two distinct continua (Cα and Cβ). These continua were isolated using the sorting capabilities of the flow cytometer. Cα contained single cells of ≤ 15 μm and cell clusters; the cells were typically 3β-HSD-negative nonsteroidogenic. Cβ consisted of single cells that increased in size up to 40 μm and were 3β-HSD-positive. Cβ was divided into two regions (R₁ and R₃) and the cells isolated. R₁ cells were ≤ 15 μm whereas R₃ cells were ≥ 20 μm. Basal progesterone and estrogen production by R₃ cells was greater than that produced by R₁ cells (as determined by radioimmunoassay of the incubation media). Relative stimulation of progesterone production by hCG, cAMP or PGE₂ was not different between R₁ and R₃ luteal cells. These results support the hypothesis that the primate corpus luteum consists of distinct cell subpopulations which differ in size and steroidogenic capacity. However, the cell types which secrete progesterone are typically responsive to gonadotropin and PGE₂, possibly via a cAMP-mediated pathway.
|
Page generated in 0.1071 seconds