• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing Eucryptorrhynchus brandti as a Potential Carrier for Verticillium albo-atrum from Infected Ailanthus altissima

Snyder, Amy Lynn 25 July 2011 (has links)
Significant mortality of the invasive tree of heaven (TOH), Ailanthus altissima (Mill.) Swingle, was first observed in Pennsylvania in 2002 to be caused by an apparently host-specific strain of Verticillium albo-atrum Reinke & Berthold, a soil-borne, vascular wilt fungus. A limited survey conducted in Virginia revealed two sites where TOH stands were infected with V. albo-atrum. A virulence test confirmed that fungal isolates from both states were found to be highly pathogenic on TOH, killing all inoculated seedlings in 9 weeks. After overwintering, 11% (n = 37) of TOH root sections tested positive for V. albo-atrum, although the origin of the colonies was not identified. The pathogenicity of this pathogen suggests that it could be used together with host-specific insects for the biological control of TOH. A host-specific herbivorous weevil from China, Eucryptorrhynchus brandti Harold (Coleoptera: Curculionidae) that has been extensively studied as another potential biological control agent for TOH is currently pending quarantine release. Quarantine experiments were conducted to test different forms of transmission with E. brandti and V. albo-atrum simultaneously. In one experiment, 75% (n = 32) of adult E. brandti transmitted V. albo-atrum to TOH seedlings after walking on an actively growing culture and feeding on infected plant material. In another study after feeding on infected TOH stems for 24, 48 and 72 h, respectively, 16.7% (n = 120), 15.0% and 12.5% of adult E. brandti ingested and passed viable V. albo-atrum propagules into feces. Surviving weevils (83%, n = 20) overwintering in infested potting mix carried viable V. albo-atrum propagules externally. In addition, all weevil progeny that emerged from infected TOH billets appeared to be as healthy as weevils reared from non-infected billets and wild parents from China. Results from these laboratory studies indicate E. brandti has the ability to spread V. albo-atrum from tree to tree in a laboratory setting. / Master of Science in Life Sciences
2

Quarantine evaluation of Eucryptorrhynchus brandti (Harold) (Coleoptera: Curculionidae), a potential biological control agent of tree-of-heaven, Ailanthus altissima in Virginia, USA

Herrick, Nathan Jon 24 February 2011 (has links)
Ailanthus altissima (Mill.) Swingle is a tree native to Asia that was intentionally introduced into the United States in the late eighteenth century. Ailanthus altissima has become an invasive species that has spread throughout most of North America. Lack of effective management tactics for suppression of A. altissima has lead to alternate control methods. Investigations into using biological control with the weevil Eucryptorrhynchus brandti were initiated in 2004. Studies were conducted to understand the general biology of E. brandti, rearing efficacy, and host specificity. Eucryptorrhynchus brandti is univoltine, has a life cycle similar to the closely related species Cryptorhynchus lapathi (L.), with 6 instars, and completes development in 126 ± 6.5 d at 25°C. Efficient egg to adult rearing was accomplished by caging 12 m and 12 f for 7 days on 23 – 92 cm long billets. Males and females can be differentiated by the structure of the metathoracic sternite and 1st abdominal segment. Host specificity experiments show that E. brandti preferentially feeds on North American A. altissima when tested against 29 species from 14 families. Larval development in the rare species Leitneria floridana Chapm. was apparent. Additional studies show that A. altissima does not occur across L. floridana distribution but may have the potential to invade L. floridana sites. / Ph. D.

Page generated in 0.0328 seconds