91 |
Mechanische Simulation der Interaktion Sportler-Sportgerät-UmweltSchwanitz, Stefan 26 February 2015 (has links)
In der vorliegenden Arbeit wird eine Methodik zur Entwicklung mechanischer Simulationen der Interaktion Sportler-Sportgerät-Umwelt zur Untersuchung der Funktionalität von Sportgeräten konzipiert und vorgestellt. Die mechanische Simulation ist die gegenständliche Nachbildung spezieller Teilaspekte des Sportlers, z.B. der Körperform, der Trägheitseigenschaften, der Masse, der Interaktionskräfte zur Umwelt oder charakteristischer Bewegungsabläufe zum Zweck der Durchführung gezielter Experimente zur Untersuchung des dynamischen Systemverhaltens Sportler-Sportgerät-Umwelt.
Dazu werden drei Fallbeispiele aus der Forschungstätigkeit der Arbeitsgruppe HLST an der Technischen Universität Chemnitz mit Methoden zur Verifikation von Simulationsmodellen – dem strukturierten Durchgehen, der Validierung im Dialog und dem Schreibtischtest – analysiert. Die Analyseergebnisse werden in eine Grobstruktur eingebettet, die aus relevanten Vorarbeiten zur Anwendung der Allgemeinen Modelltheorie abgeleitet ist. Die in den jeweiligen Fallbeispielen verwendeten Prozessschritte, Methoden und Werkzeuge werden dargestellt und die Entwicklungsergebnisse erörtert. Im Abschluss jedes Fallbeispiels wird der Entwicklungsprozess anhand von einheitlichen Kriterien bewertet.
In einem abschließenden Schritt erfolgt die Zusammenführung der im Stand der Technik dargelegten Grundlagen und der in den drei Fallbeispielen gewonnenen Informationen zu einer strukturieren und kommentierten Methodik.:1 Einleitung 8
1.1 Definitionen 8
1.2 Einsatzgebiete der mechanischen Simulation 11
1.2.1 Überblick 11
1.2.2 Sicherheit gegen Versagen 12
1.2.3 Konformität 14
1.2.4 Funktionalität 15
1.3 Motivation und Zielsetzung 16
1.4 Aufbau der Arbeit 16
2 Theoretische Grundlagen 18
2.1 Experimentelle Methoden der Sportgeräteentwicklung 18
2.1.1 Einordnung nach Odenwald (2006) 18
2.1.2 Einordnung nach Witte (2013) 19
2.1.3 Einordnung nach Senner (2001) 20
2.1.4 Eigene Systematisierung 23
2.2 Allgemeine Modelltheorie 26
2.3 Existierende Ansätze für die Applikation der Allgemeinen Modelltheorie 29
2.3.1 Anwendung der AMT in der Chemie 29
2.3.2 Anwendung der AMT in der Biomechanik 30
2.3.3 Anwendung der AMT in Logistik und Produktion 32
2.3.4 Fazit 37
3 Präzisierung der Problemstellung 38
4 Methodik 39
5 Fallbeispiel Schwimmanzug – Strömungswiderstand 41
5.1 Vorbemerkungen 41
5.2 Aufgabenanalyse 42
5.2.1 Definition der zu untersuchenden Funktionalität des Sportgeräts 42
5.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 42
5.2.3 Analyse der Simulationswürdigkeit 43
5.2.4 Identifikation des Originals 47
5.3 Modellformulierung 48
5.3.1 Modellansatz 48
5.3.2 Modellsynthese 50
5.4 Modellimplementierung 53
5.4.1 Herstellung des Strömungskörpers 53
5.4.2 Simulation der Fortbewegung im Wasser 54
5.5 Modellanwendung 57
5.6 Modellüberprüfung 60
5.6.1 Abgleich zwischen den experimentellen Ergebnissen und dem theoretischen Modell 60
5.6.2 Vergleich mit dem Original 62
5.7 Fazit 67
6 Fallbeispiel Laufschuh – Stoßabsorption 69
6.1 Vorbemerkungen 69
6.2 Aufgabenanalyse 69
6.2.1 Definition der zu untersuchenden Funktionalität 69
6.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 71
6.2.3 Analyse der Simulationswürdigkeit 71
6.2.4 Definition des Originals 72
6.3 Modellformulierung 72
6.3.1 Modellansatz 72
6.3.2 Systemanalyse 72
6.3.3 Modellsynthese 77
6.4 Modellimplementierung 78
6.4.1 Krafterzeugung 78
6.4.2 Kraftübertragung 79
6.5 Modellanwendung 81
6.6 Modellüberprüfung 82
6.6.1 Soll-Istwert-Vergleich 82
6.6.2 Reliabilität 83
6.6.3 Korrelation zu Stoßbelastungsvariablen 85
6.6.4 Ereignisvaliditätstest: Sohlentemperatur 86
6.6.5 Ereignisvaliditätstest: Sohlendeformation 88
6.7 Fazit 91
7 Fallbeispiel Fußballschuh – Traktionseigenschaften 94
7.1 Vorbemerkungen 94
7.2 Aufgabenanalyse 94
7.2.1 Definition der zu untersuchenden Funktionalität 94
7.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 95
7.2.3 Analyse der Simulationswürdigkeit 96
7.2.4 Definition des Originals 97
7.3 Modellformulierung 98
7.3.1 Modellansatz 98
7.3.2 Systemanalyse 98
7.3.3 Modellsynthese 106
7.4 Modellimplementierung 107
7.5 Modellanwendung 110
7.6 Modellüberprüfung 114
7.6.1 Reliabilität 114
7.6.2 Sensitivitätsanalyse: Normalkraft 114
7.6.3 Sensitivitätsanalyse: Kraftanstieg horizontal 116
7.6.4 Vergleich mit der Realität 116
7.7 Fazit 117
8 Methodik zur Entwicklung mechanischer Simulationen der Interaktion Sportler-Sportgerät-Umwelt 119
8.1 Schematische Darstellung 119
8.2 Erläuterung der Vorgehensempfehlung 120
8.2.1 Klärung der Problemstellung 120
8.2.2 Modellbildung 122
8.2.3 Modellanwendung 124
9 Schlussbetrachtung 126
Literaturverzeichnis 128
Tabellenverzeichnis 133
Abbildungsverzeichnis 135
Danksagung 138
Selbstständigkeitserklärung 139
Lebenslauf 140 / In this dissertation a methodology is conceived that aims to structure the development process of test arrangements that mechanically simulate the interaction of athlete, sports equipment and environment. Mechanical simulation in this context is defined as the physical replication of specific properties of the athlete (e.g. the shape of the human body, body weight, joint kinematics, inertia, external forces in specific movements) in order to conduct experiments to investigate the dynamic behavior of the system athlete-equipment-environment.
Therefore, three case studies of mechanical simulation models that have been developed at Technische Universität Chemnitz are analyzed by applying the validation and verification methods “structured walkthrough”, “face validity” and “desk checking”. The results of that analysis are embedded into a framework that is derived by literature review on applied model theory. For each of the three development processes the procedure model is identified and main tools and methods are discussed. Every case study is finally assessed by using standardized evaluation criterions.
Finally, the main findings of the analysis of the case studies as well as knowledge obtained by reviewing the state of the art in model theory and simulation methods are used to build up a structured and commentated guideline.:1 Einleitung 8
1.1 Definitionen 8
1.2 Einsatzgebiete der mechanischen Simulation 11
1.2.1 Überblick 11
1.2.2 Sicherheit gegen Versagen 12
1.2.3 Konformität 14
1.2.4 Funktionalität 15
1.3 Motivation und Zielsetzung 16
1.4 Aufbau der Arbeit 16
2 Theoretische Grundlagen 18
2.1 Experimentelle Methoden der Sportgeräteentwicklung 18
2.1.1 Einordnung nach Odenwald (2006) 18
2.1.2 Einordnung nach Witte (2013) 19
2.1.3 Einordnung nach Senner (2001) 20
2.1.4 Eigene Systematisierung 23
2.2 Allgemeine Modelltheorie 26
2.3 Existierende Ansätze für die Applikation der Allgemeinen Modelltheorie 29
2.3.1 Anwendung der AMT in der Chemie 29
2.3.2 Anwendung der AMT in der Biomechanik 30
2.3.3 Anwendung der AMT in Logistik und Produktion 32
2.3.4 Fazit 37
3 Präzisierung der Problemstellung 38
4 Methodik 39
5 Fallbeispiel Schwimmanzug – Strömungswiderstand 41
5.1 Vorbemerkungen 41
5.2 Aufgabenanalyse 42
5.2.1 Definition der zu untersuchenden Funktionalität des Sportgeräts 42
5.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 42
5.2.3 Analyse der Simulationswürdigkeit 43
5.2.4 Identifikation des Originals 47
5.3 Modellformulierung 48
5.3.1 Modellansatz 48
5.3.2 Modellsynthese 50
5.4 Modellimplementierung 53
5.4.1 Herstellung des Strömungskörpers 53
5.4.2 Simulation der Fortbewegung im Wasser 54
5.5 Modellanwendung 57
5.6 Modellüberprüfung 60
5.6.1 Abgleich zwischen den experimentellen Ergebnissen und dem theoretischen Modell 60
5.6.2 Vergleich mit dem Original 62
5.7 Fazit 67
6 Fallbeispiel Laufschuh – Stoßabsorption 69
6.1 Vorbemerkungen 69
6.2 Aufgabenanalyse 69
6.2.1 Definition der zu untersuchenden Funktionalität 69
6.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 71
6.2.3 Analyse der Simulationswürdigkeit 71
6.2.4 Definition des Originals 72
6.3 Modellformulierung 72
6.3.1 Modellansatz 72
6.3.2 Systemanalyse 72
6.3.3 Modellsynthese 77
6.4 Modellimplementierung 78
6.4.1 Krafterzeugung 78
6.4.2 Kraftübertragung 79
6.5 Modellanwendung 81
6.6 Modellüberprüfung 82
6.6.1 Soll-Istwert-Vergleich 82
6.6.2 Reliabilität 83
6.6.3 Korrelation zu Stoßbelastungsvariablen 85
6.6.4 Ereignisvaliditätstest: Sohlentemperatur 86
6.6.5 Ereignisvaliditätstest: Sohlendeformation 88
6.7 Fazit 91
7 Fallbeispiel Fußballschuh – Traktionseigenschaften 94
7.1 Vorbemerkungen 94
7.2 Aufgabenanalyse 94
7.2.1 Definition der zu untersuchenden Funktionalität 94
7.2.2 Analyse der zugrundeliegenden technischen Funktion des Sportgeräts 95
7.2.3 Analyse der Simulationswürdigkeit 96
7.2.4 Definition des Originals 97
7.3 Modellformulierung 98
7.3.1 Modellansatz 98
7.3.2 Systemanalyse 98
7.3.3 Modellsynthese 106
7.4 Modellimplementierung 107
7.5 Modellanwendung 110
7.6 Modellüberprüfung 114
7.6.1 Reliabilität 114
7.6.2 Sensitivitätsanalyse: Normalkraft 114
7.6.3 Sensitivitätsanalyse: Kraftanstieg horizontal 116
7.6.4 Vergleich mit der Realität 116
7.7 Fazit 117
8 Methodik zur Entwicklung mechanischer Simulationen der Interaktion Sportler-Sportgerät-Umwelt 119
8.1 Schematische Darstellung 119
8.2 Erläuterung der Vorgehensempfehlung 120
8.2.1 Klärung der Problemstellung 120
8.2.2 Modellbildung 122
8.2.3 Modellanwendung 124
9 Schlussbetrachtung 126
Literaturverzeichnis 128
Tabellenverzeichnis 133
Abbildungsverzeichnis 135
Danksagung 138
Selbstständigkeitserklärung 139
Lebenslauf 140
|
92 |
Interrogating Underlying Mechanisms of Room Temperature Sodium Sulfur CellsTrent James Murray (14216678) 11 August 2023 (has links)
<p>Two studies incorporated providing the groundwork for a blueprint to design sodium sulfur cells from electrode fabrication to choices in electrolyte such as DME, DEGDME, TEGDME and two different salts NaClO4 and NaPF6. First study describes role of the binder within the system comparing carboxymethyl cellulose and carboxymethyl cellulose with a styrene butadiene elastomer addition. The second study focuses on methods to prevent polysulfide shuttling within room temperature sodium sulfur system</p>
|
93 |
OBJECTIVE FLOW PATTERN IDENTIFICATION AND CLASSIFICATION IN INCLINED TWO-PHASE FLOWS USING MACHINE LEARNING METHODSDavid H Kang Jr (15352852) 27 April 2023 (has links)
<p>Two-phase modeling and simulation capabilities are strongly dependent on the accuracy of flow regime identification methods. Flow regimes have traditionally been determined through visual observation, resulting in subjective classifications that are susceptible to inconsistencies and disagreements between researchers. Since the majority of two-phase flow studies have been concentrated around vertical and horizontal pipe orientations, flow patterns in inclined pipes are not well-understood. Moreover, they may not be adequately described by conventional flow regimes which were conceptualized for vertical and horizontal flows. Recent work has explored applying machine learning methods to vertical and horizontal flow regime identification to help remedy the subjectivity of classification. Such methods have not, however, been successfully applied to inclined flow orientations. In this study, two novel unsupervised machine learning methods are proposed: a modular configuration of multiple machine learning algorithms that is adaptable to different pipe orientations, and a second universal approach consisting of several layered algorithms which is capable of performing flow regime classification for data spanning multiple orientations. To support this endeavor, an experimental database is established using a dual-ring impedance meter. The signals obtained by the impedance meter are capable of conveying distinct features of the various flow patterns observed in vertical, horizontal, and inclined pipes. Inputs to the unsupervised learning algorithms consist of statistical measures computed from these signals. A novel conceptualization for flow pattern classification is developed, which maps three statistical parameters from the data to red, green, and blue primary color intensities. By combining the three components, a flow pattern map can be developed wherein similar colors are produced by flow conditions with like statistics, transforming the way flow regimes are represented on a flow regime map. The resulting dynamic RGB flow pattern map provides a physical representation of gradual changes in flow patterns as they transition from one regime to another. By replacing the static transition boundaries with physically informed, dynamic gradients between flow patterns, transitional flow patterns may be described with far greater accuracy. This study demonstrates the effectiveness of the proposed method in generating objective flow regime maps, providing a basis for further research on the characterization of two-phase flow patterns in inclined pipes. The three proposed methods are compared and evaluated against flow regime maps found in literature.</p>
|
94 |
Exprimental_Analysis_On_The_Effects_Of_Inclination_On_Two_Phase_Flows_DrewRyan_Dissertation.pdfDrew McLane Ryan (14227865) 07 December 2022 (has links)
<p> </p>
<p>The study of two-phase flow in different orientations can allow for greater understanding of the fundamentals of two-phase flow dynamics. While a large amount of work has been performed for vertical flows and recent work has been done for horizontal flows, limited research has been done studying inclined upward two-phase flows between those two orientations. Studying two-phase flows at various inclinations is important for developing physical models and simulations of two-phase flow systems and understanding the changes between what is observed for symmetric vertical flows and asymmetric horizontal flows. The present work seeks to systematically characterize the effects of inclination on adiabatic concurrent air-water two-phase flows in straight pipes. An experimental database is established for local and global two-phase flow parameters in a novel inclinable 25.4 mm inner diameter test facility using four-sensor conductivity probes, high speed video capabilities, a ring-type impedance meter, a pressure transducer, and a gamma densitometer. Rotatable measurement ports are employed to allow for local conductivity probe measurements across the flow profile to capture asymmetric parameter distributions during experiments without stopping the flow. Some of the major effects of inclination are investigated, including the effects on flow regime transition, bubble distribution, frictional pressure loss, and relative motion between the two phases. Flow visualization and machine-learning methods are employed to identify the transitions between flow regimes for inclined orientations, and these transitions are compared against existing theoretical flow regime transition criteria proposed in literature. The theoretical transitions in literature agree well with both methods for vertical flow, but additional work is necessary for angles between 0 degrees and 60 degrees. The effect of inclination on two-phase frictional pressure drop is explored, and a novel adaption of the Lockhart-Martinelli pressure drop correlation is proposed, which is able to predict the pressure drop for the conditions investigated with an absolute percent difference of 2.6%. To explore the relationships between orientation, void fraction, and relative motion, one-dimensional drift flux analyses are performed for the data at each angle investigated. It is observed that the relative velocity between phases decreases as the angle is reduced, with a relative velocity near zero at some intermediate angles and a negative relative velocity for near-horizontal orientations. Existing modeling capabilities that have been developed for vertical and horizontal flows are evaluated based on the local two-phase parameters collected at multiple orientations. The performance of the one-dimensional interfacial area transport equation for vertical and horizontal flows is tested against experimental data and a novel model for horizontal and inclined-upward bubbly flows is proposed. Finally, an evaluation of existing momentum transfer relations is performed for the two-fluid model using three-dimensional computational fluid dynamics tools for horizontal and inclined. The prediction of the void fraction distribution and gas velocity profiles are compared against experimental data, and improvements to the lift force model are identified based on changes in the relative velocity between phases. </p>
|
95 |
adix_Masters_thesis_FINAL.pdfAdam John Dix (14210324) 05 December 2022 (has links)
<p> Wire-wrapped rod bundles are often used in nuclear reactors operating in a fast neutron spectrum, as designers seek to minimize neutron scattering by packing the fuel pins into a hexagonal lattice. Bundles with many rods have extensively been studied as representative of large fuel assemblies, however far fewer experiments have investigated bundles with 7 rods (7-pin bundles). The large difference in subchannel number between these bundles leads to 7-pin bundles having different pressure drop characteristics. The Versatile Test Reactor (VTR) sodium cartridge loop proposes to use a 7-pin bundle as its experimental core region, highlighting the need for additional data and models. The current work seeks to establish a better understanding of the pressure drop in 7-pin wire-wrapped rod bundles through scaled experiments and a novel pressure drop model. A scaling analysis is first performed to demonstrate the applicability of water experiments to the VTR sodium cartridge loop, before an experimental test facility is designed and constructed. Experiments are then performed at a range of Reynolds numbers to determine the pressure drop. Current models are able to predict the data well, but are complex and can be difficult to use. A comparatively simpler model is developed, based on exact laminar solutions of a simplified rod bundle, which also offers a theoretical lower bound for the pressure drop in wire-wrapped bundles. The proposed model compares well with the existing experimental database, able to predict bundle friction factor with an average absolute percent difference of 10.8%. This accuracy is also similar to existing correlations, while relying on fewer empirical coefficients. The theoretical lower bound is also used to identify several datasets in literature that may feature data that is systemically lower than the true pressure drop, which agrees with previous observations in literature. </p>
|
96 |
Integrating Blood Air Separation with a Microgravity Surgical FacilityJordan Wesley Soberg (14231915) 09 December 2022 (has links)
<p>Future long-duration space missions will take humans farther from the support resources of Earth than ever before. These missions will require microgravity surgical technologies in the case of an emergency that necessitates medical intervention. This experiment integrated three different surgical technologies for testing in weightlessness on parabolic flights: a surgical containment dome, a multi-function surgical wand, and a microgravity blood-air separator. Two fluid loops were utilized: one in which the surgical wand, containment dome, and a wound model were used to provide a realistic mixture of blood simulant and air to the blood-air separator. The other fluid loop used prescribed mixture ratios of air and blood to test the performance of the separator under varying conditions. The results of this experiment showed that the multi-functional surgical tool and dome functioned as designed. In addition, each separator successfully separated the blood and air from the mixture, allowing for future blood transfusion. With this demonstration, each system used in this experiment qualifies as technology readiness level 6. Advancing the technology readiness level of these technologies further will require long duration zero-g testing on-orbit before inclusion in authentic space mission emergency surgical strategy. </p>
|
97 |
Development of Universal Databases and Predictive Tools for Two-Phase Heat Transfer and Pressure Drop in Cryogenic Flow Boiling Heated Tube ExperimentsVishwanath Ganesan (7650614) 03 August 2023 (has links)
<p>In this study, universal databases and semi-empirical correlations are developed for cryogenic two-phase heat transfer and pressure drop in heated tubes undergoing flow boiling.</p>
|
98 |
Experimental Investigations and Theoretical/Empirical Analyses of Forced-Convective Boiling of Confined Impinging Jets and Flows through Annuli and ChannelsV.S. Devahdhanush (13119831) 21 July 2022 (has links)
<p>This study comprises experimental investigations and theoretical/empirical analyses of three forced-convective (pumped) boiling schemes: (i) confined round single jet and jet array impingement boiling, and flow boiling through conventional-sized (ii) concentric circular annuli and (iii) rectangular channels. These schemes could be utilized in the thermal management of various applications including high-heat-flux electronic devices, power devices, electric vehicle charging cables, avionics, future space vehicles, etc.</p>
|
99 |
Evaporation-Induced Salt Precipitation in Porous Media and the Governing Solute TransportRishav Roy (13149219) 25 July 2022 (has links)
<p> </p>
<p>Water scarcity is a global problem impacting a majority of the world population. A significant proportion of the global population is deprived of clean drinking water, an impact felt by the rural as well as urban population. Saltwater desalination provides an attractive option to produce clean water. Some technologies to generate potable water include reverse osmosis (RO), multi-stage flash distillation (MSF), vapor compression distillation and multi-effect distillation (MED). Distillation plants such as those in MED often have falling-film evaporators operating at low energy conversion efficiency and hence distillation is performed over multiple stages (or effects). Porous materials can be utilized as evaporators in such plants with the objective of leveraging their superior efficiency. This can potentially decrease the number of effects over which distillation occurs. However, evaporation of high-salinity salt solution eventually results in salt precipitation which can cause fouling and induce structural damages, especially if the precipitates appear within the porous medium. Crystallization-induced structural damages are also of significant concern to building materials and for their role in weathering of historical monuments. It is thus crucial to understand the mechanisms governing salt precipitation in a porous medium.</p>
<p>Transport of solute in such a medium is either driven by flow of the solution (advection) or by concentration gradients (diffusion). The dynamics of solute transport is further complicated due to the involvement of a reaction term accounting for any salt precipitation. The relative strengths of these driving forces determine the solute transport behavior during an evaporation-driven process. The wide-scale applications of solute transport and its complicated nature warrant investigation, both experimental and theoretical, of the dependence of solute transport and the subsequent precipitation on the operating conditions and the properties of the porous medium.</p>
<p>This dissertation first focuses on developing a novel modeling framework for evaluating the transient behavior of the solute mass fraction profile within the domain of a one-dimensional porous medium, and extending its capability to predict the formation of salt precipitate in the medium. Experimental investigations are then performed to study the formation of precipitate on sintered porous copper wicks of different particle-size compositions, and developing a mechanistic understanding of the governing principles.</p>
<p>A numerical modeling framework is developed to analyze evaporation-driven solute transport. Transient advection-diffusion equations govern the salt mass fraction profile of the solution inside the porous medium. These governing equations are solved to obtain the solute mass fraction profile within the porous medium as well as the effloresced salt crust. Further accounting for precipitation allows a study of the formation and growth of efflorescence and subflorescence. Crystallization experiments are performed by allowing a NaCl solution to evaporate from a porous medium of copper particles and the subflorescence trends predicted by the model are validated. The modeling framework offers a comprehensive tool for predicting the spatio-temporal solute mass fraction profiles and subsequent precipitation in a porous medium.</p>
<p>The dependence of efflorescence pattern on the properties of a porous medium is also investigated. Efflorescence patterns are visually observed and characterized on sintered copper particle wicks with spatially unimodal and bimodal compositions of different particle sizes. Efflorescence is found to form earlier and spread readily over a wick made from smaller particles, owing to their lower porosity, while it is limited to certain areas of the surface for wicks composed of the larger particles. A scaling analysis explains the observed efflorescence patterns in the bimodal wicks caused by particle size-induced non-uniform porosity and permeability. The non-uniformity reduces the advective flux in a high-permeability region by diverting flow towards a low-permeability region. This reduction in advective flux manifests as an exclusion distance surrounding a crystallization site where efflorescence is not expected to occur. The dependence of this exclusion distance on the porosity and permeability of the porous medium and the operating conditions is investigated. A large exclusion distance associated with the regions with bigger particles in the bimodal wicks explains preferential efflorescence over the regions with smaller particles. This novel scaling analysis coupled with the introduction of the exclusion distance provides guidelines for designing heterogeneous porous media that can localize efflorescence.</p>
<p>Additionally, droplet interactions with microstructured superhydrophobic surfaces as well as soft surfaces were investigated during the course of this dissertation, separate from the above investigations. These investigations involve the interplay of surface energies with electrical or elastic energies and are studied both experimentally and through theoretical models, and therefore are retained as additional chapters in the thesis as being of relevant interest. Electrowetting experiments are performed on superhydrophobic surfaces with re-entrant structures to study their resilience to the Cassie-to-Wenzel transition. The deformation of soft surfaces caused by forces exerted by microscale droplets is studied and the resulting interaction between multiple droplets is explored. </p>
|
100 |
EXPERIMENTAL STUDY OF LUBRICANT DROPLETS IN A ROTARY COMPRESSOR AND OPTICAL DIAGNOSTICS OF EVAPORATION PROCESSPuyuan Wu (13949580) 13 October 2022 (has links)
<p> </p>
<p>Part I studies the lubricant sprays and droplets in a rotary compressor. Air conditioning (AC) systems are now widely used in residential and commercial environments, while the compressor is the most important element in the AC system, and rotary compressors are often used in split AC appliances, whose number is estimated to reach 3.7 billion in 2050. In a rotary compressor, the lubricant oil atomizes into small droplets due to the differential pressure in and out of the cylinder. Part of the lubricant oil droplets carried by the refrigerant vapor will ultimately exhaust from the compressor through the discharge pipe. The ratio of the discharged oil volume to the total oil volume is characterized as the Oil Discharge Ratio (ODR). High ODR will reduce the reliability of the compressor and deteriorate the heat transfer of the condenser and the evaporator, resulting in decreased efficiency. Thus, controlling the ODR is a key issue for the design of the rotary compressor.</p>
<p>In Part I, rotary compressors were modified to provide optical access into its internal space, i.e., the lower cavity (refers to the space between the cylinder and the motor), above the rotor/stator, and at the discharge tube level. The modified rotary compressors’ operation was supported by a test rig which provided a wide range of operating conditions, e.g., pressure and frequency. Thus, in-situ optical measurements, e.g., shadowgraph and holograph, can be performed to visualize the lubricant sprays and droplets in the rotary compressor. An image processing routine containing the Canny operator and Convolutional Neural-Network was developed to identify droplets from high-resolution shadowgraph images, while Particle Image Velocimetry (PIV) and Optical Flow Velocimetry (OFV) were applied to calculate the spray and droplet’s velocities with time-resolved shadowgraph images. Parallel Four-Step Phase Shifting Holograph (PFSPSH) located the droplets’ positions in a three-dimensional volume under the specific operating condition.</p>
<p>Both primary and secondary atomization were observed in the rotary compressor, while primary atomization is the major source of droplet production. The droplet size distributions versus the frequency, vertical direction, radial direction, and pressure are obtained. It is observed that the droplet characteristic mean diameters increase with the frequency and pressure. They also become larger in the outer region above the rotor/stator and keep constant in the radial direction at the discharge tube level. The penetration velocity of the lubricant spray is calculated in the lower cavity. An outward shift of the jet core combined with an outward velocity component was observed. Additionally, horizontal swirling velocity above the rotor/stator and at the discharge tube level and the vertical recirculation velocity above the rotor/stator are characterized. The volume fraction of droplets was also characterized under the specific operating condition. The results provide detailed experimental data to set up the boundary conditions used in CFD. They also show that the droplets in the upper cavity are mostly from the discharge process of the cylinder in the lower cavity. The results support a droplet pathway model in the rotary compressor, which can guide the optimization of future rotary compressors.</p>
<p>Evaporation is commonly seen in hydrology, agriculture, combustion, refrigeration, welding, etc. And it always accompanies heat and mass transfer at the liquid-gas interface and is affected by the substance’s properties, the environment’s pressure, temperature, convection, and so on. PFSPSH in Part I aims to retrieve the phase information for holograph reconstruction. Part II further explores the application of the PFSPSH technology in Part I to observe the evaporation process of acetone, where the phase disturbance caused by the vapor is used to reconstruct the vapor concentration in space. The method is called Parallel Four-Step Phase Shifting Interferometer (PFSPSI). The first case studies the evaporation process of the acetone contained in a liquid pool with uniform air flow in a low-speed wind tunnel. The mole fractions of the acetone vapor near the liquid-air interface with different air speeds are characterized. The second case studies the evaporation process of acetone droplets levitated by an ultrasound levitator. The mole fraction of the acetone vapor near the liquid-air interface is characterized by assuming an axisymmetric field and using the analytical solution of the inverse Abel transform. The asymmetric pattern of the acetone vapor field is observed, which is considered due to the drastic sound pressure change at the stand wave location produced by the ultrasound levitator. The mass transfer of the evaporation process by the vapor’s mole fraction is calculated and compared with the mass transfer calculated by the droplet size change. It is observed that the mass transfer by the vapor’s mole fraction is generally smaller than the mass transfer calculated by the droplet size change, which can be explained by the convection process induced by the acoustic streaming.</p>
|
Page generated in 0.4242 seconds