• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A posteriori error estimations for the generalized finite element method and modified versions / Estimativas de erro a-posteriori para o método dos elementos finitos generalizados e versões modificadas

Lins, Rafael Marques 07 August 2015 (has links)
This thesis investigates two a posteriori error estimators, based on gradient recovery, aiming to fill the gap of the error estimations for the Generalized FEM (GFEM) and, mainly, its modified versions called Corrected XFEM (C-XFEM) and Stable GFEM (SGFEM). In order to reach this purpose, firstly, brief reviews regarding the GFEM and its modified versions are presented, where the main advantages attributed to each numerical method are highlighted. Then, some important concepts related to the error study are presented. Furthermore, some contributions involving a posteriori error estimations for the GFEM are shortly described. Afterwards, the two error estimators hereby proposed are addressed focusing on linear elastic fracture mechanics problems. The first estimator was originally proposed for the C-XFEM and is hereby extended to the SGFEM framework. The second one is based on a splitting of the recovered stress field into two distinct parts: singular and smooth. The singular part is computed with the help of the J integral, whereas the smooth one is calculated from a combination between the Superconvergent Patch Recovery (SPR) and Singular Value Decomposition (SVD) techniques. Finally, various numerical examples are selected to assess the robustness of the error estimators considering different enrichment types, versions of the GFEM, solicitant modes and element types. Relevant aspects such as effectivity indexes, error distribution and convergence rates are used for describing the error estimators. The main contributions of this thesis are: the development of two efficient a posteriori error estimators for the GFEM and its modified versions; a comparison between the GFEM and its modified versions; the identification of the positive features of each error estimator and a detailed study concerning the blending element issues. / Esta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM (GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são abordados focando em problemas da mecânica da fratura elástico linear. O primeiro estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de efetividade, distribuição do erro e taxas de convergência são usados para descrever os estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma comparação entre o GFEM e suas versões modificadas; a identificação das características positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos de mistura.
2

A posteriori error estimations for the generalized finite element method and modified versions / Estimativas de erro a-posteriori para o método dos elementos finitos generalizados e versões modificadas

Rafael Marques Lins 07 August 2015 (has links)
This thesis investigates two a posteriori error estimators, based on gradient recovery, aiming to fill the gap of the error estimations for the Generalized FEM (GFEM) and, mainly, its modified versions called Corrected XFEM (C-XFEM) and Stable GFEM (SGFEM). In order to reach this purpose, firstly, brief reviews regarding the GFEM and its modified versions are presented, where the main advantages attributed to each numerical method are highlighted. Then, some important concepts related to the error study are presented. Furthermore, some contributions involving a posteriori error estimations for the GFEM are shortly described. Afterwards, the two error estimators hereby proposed are addressed focusing on linear elastic fracture mechanics problems. The first estimator was originally proposed for the C-XFEM and is hereby extended to the SGFEM framework. The second one is based on a splitting of the recovered stress field into two distinct parts: singular and smooth. The singular part is computed with the help of the J integral, whereas the smooth one is calculated from a combination between the Superconvergent Patch Recovery (SPR) and Singular Value Decomposition (SVD) techniques. Finally, various numerical examples are selected to assess the robustness of the error estimators considering different enrichment types, versions of the GFEM, solicitant modes and element types. Relevant aspects such as effectivity indexes, error distribution and convergence rates are used for describing the error estimators. The main contributions of this thesis are: the development of two efficient a posteriori error estimators for the GFEM and its modified versions; a comparison between the GFEM and its modified versions; the identification of the positive features of each error estimator and a detailed study concerning the blending element issues. / Esta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM (GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são abordados focando em problemas da mecânica da fratura elástico linear. O primeiro estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de efetividade, distribuição do erro e taxas de convergência são usados para descrever os estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma comparação entre o GFEM e suas versões modificadas; a identificação das características positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos de mistura.
3

Modeling of damage propagation in cohesive-frictional materials

Haghighat, Ehsan 06 1900 (has links)
The primary focus in this research is on proposing a methodology for modeling of discrete crack propagation in geomaterials such as soil, rock, and concrete. Structures made of such materials may undergo damage due to several reasons. Here, mechanical loading and chemo-mechanical interactions that result in degradation of strength parameters are considered as the sources of damage initiation. Both tensile and compressive cracks are investigated. For analysis of crack propagation, two different methodologies are employed; the Constitutive Law with Embedded Discontinuity (CLED) and the Extended Finite Element Method (XFEM). The CLED approach is enhanced here to describe the discrete nature of crack propagation. This is done by coupling the CLED with explicit modeling of crack path using the Level-Set method. The XFEM is used as a verification tool to check the results from CLED analysis. An algorithm is proposed for crack initiation and propagation that results in stable and a mesh-independent solution. The CLED approach is further improved by developing the return-mapping and closest-point projection algorithms. Extensive numerical investigations are conducted that include mode I cracking in a three point bending test, mode I cracking in notched cantilever beam, mixed cracking mode in a plate subjected to shear and tension, and a mixed mode cracking in a notched beam under four point loading. For frictional interfaces, the shear band formation in a sample subjected to bi-axial compression and the shear band formation in a geo-slope are studied. The thesis also addresses the topic of the response of unsaturated cohesive soils undergoing an infiltration process. The problem is approached within the framework of Chemo-Plasticity. It is assumed that the complex chemo-mechanical interactions are the controlling factors for degradation of strength parameters during this process. A return mapping integration scheme is developed and the approach is employed to investigate the stability of a geoslope subjected to a heavy rainfall. Analysis of shear band formation is further investigated in the context of sedimentary rocks. The microstructure tensor approach is used to describe the inherent anisotropy in this class of materials. The orientation of the shear band is defined by invoking the Critical Plane approach and the closest-point projection algorithm is developed for numerical integration of the governing constitutive relations. The model is used along with CLED for analysis of the mechanical response of Tournemire argillite. It is shown that the friction between loading platens and sample can play an important role in the process of shear band formation and the associated assessment of the ultimate load. A mesh-sensitivity analysis employing the CLED framework is also conducted here. The research clearly demonstrates that the discrete representation of crack path propagation is essential for an accurate analysis of failure in various engineering structures. It is shown that if the classical smeared Constitutive Law with Embedded Discontinuity is enhanced to simulate the discrete nature of the damage process, it can yield very accurate results that are virtually identical to those obtained from discrete approaches such as XFEM. / Thesis / Candidate in Philosophy

Page generated in 0.0648 seconds