• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites

Xie, Yanli. January 2008 (has links)
Thesis (Ph.D)--Materials Science and Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Speyer, Robert; Committee Co-Chair: Sanders, Thomas; Committee Member: Gerhardt, Rosario; Committee Member: Sandhage, Kenneth; Committee Member: Snyder, Robert; Committee Member: Zhang, John. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites

Xie, Yanli 24 November 2008 (has links)
Zirconium- and tantalum-based diborides, and diboride/carbide composites are of interest for ultra-high temperature applications requiring improved thermomechanical and thermochemical stability. This thesis focuses on the synthesis, processing and sintering of nanocrystalline powders with Zr- and Ta-based diboride/carbide/silicide compositions. A solution-based processing method was developed to prepare reactive mixtures that were precursors for ZrB₂-based powders. The precursors reacted to form the ceramic powders after suitable pyrolysis and borothermal/carbothermal reduction heat treatments. Single-phase ZrB₂ powders were prepared with initial composition of C/Zr = 4.8 and B/Zr = 3.0. ZrB₂-based composite powders with ZrC, ZrO₂, TaB₂, TaC, SiC, TaSi₂ and B₄C were prepared with particle sizes of 10-500 nm for different phases based SEM micrographs. The composite powders were highly sinterable with proper processing methods developed to avoid and remove oxide impurities. The relative densities of ZrB₂/B₄C, ZrB₂/TaB₂, ZrB₂/TaB₂/B4C, ZrB₂/TaSi₂ were in the range of 91%-97% after pressureless sintering at 2020 ℃ for 1 h or 30 min.

Page generated in 0.1074 seconds