Spelling suggestions: "subject:"extrapolar planet""
1 |
Transmission spectra of highly irradiated extrasolar planet atmospheresNortmann, Lisa 19 November 2015 (has links)
No description available.
|
2 |
Detecting And Characterizing Exoplanets: The Gj 436 And Hd 149026 SystemsStevenson, Kevin 01 January 2012 (has links)
This dissertation investigates two stellar systems known to contain extrasolar planets. It is comprised of five chapters that are readily divided into three independent but related analyses. Chapter 1 reports on the analysis of low signal-to-noise secondary-eclipse observations of the Neptune-sized exoplanet GJ 436b using the Spitzer Space Telescope in multiple infrared channels. The measured wavelength-dependent eclipse depths provide constraints on the planet’s dayside atmospheric composition and thermal profile. The analysis indicates that GJ 436b’s atmosphere is abundant in carbon monoxide and deficient in methane relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Chapter 2 discusses the techniques used to analyze GJ 436b, introduces the Least Asymmetry centering method and compares its effectiveness to two existing techniques, and describes the functions used to model Spitzer’s position- and time-dependent systematics. Additionally, it includes best-fit parameters with uncertainties, histograms of the free parameters, and correlation plots between free parameters. Chapter 3 reports on the analysis of eleven HD 149026b secondary-eclipse observations at five Spitzer wavelengths plus three primary-transit observations at 8.0 µm. Chemical-equilibrium models find no indication of a temperature inversion in the dayside atmosphere of HD 149026b. The best-fit model favors large amounts of CO and CO2 , moderate heat redistribution (f = 0.5), and a strongly eniii hanced metallicity. These analyses use BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping and parameter orthogonalization. The former is a new technique to model two position-dependent systematics, intrapixel variability and pixelation. The latter is a technique that accelerates the convergence of Markov chains that employ the Metropolis random walk sampler. Chapter 4 reports on the detection of GJ 436c, a 0.65 ± 0.04 R⊕ exoplanet transiting a nearby M-dwarf star with a period of 1.365862 ± 8×10−6 days. It also presents evidence for a similarly sized exoplanet candidate (currently labeled UCF-1.02) orbiting the same star with an undetermined period. Assuming an Earth-like density of 5.515 g/cm3 , GJ 436c has a predicted mass of 0.28 Earth-masses (M⊕, 2.6 Mars-masses) and a surface gravity of 0.65 g (where g is the gravity on Earth). Its weak gravitational field and close proximity to its host star imply that GJ 436c is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. Chapter 5 presents numerical simulations of the GJ 436 system using the Mercury N-body integrator and detailed calculations used to constrain the atmospheric composition of the sub-Earth-sized planet GJ 436c. The simulations find a ∼35-year periodic trend in the osculating elements wherein GJ 436c’s eccentricity varies between 0 and 0.21, its peak-to-trough inclination amplitude is 3.2◦ , and transit-timing variations range from ±200 to ±3 minutes.
|
3 |
Transiting exoplanets : characterisation in the presence of stellar activityAlapini Odunlade, Aude Ekundayo Pauline January 2010 (has links)
The combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet structure and evolution models. The uncertainties on the parameters of large exoplanets mainly arise from those on stellar masses and radii. For small exoplanets, the treatment of stellar variability limits the accuracy on the de- rived parameters. The goal of this PhD thesis was to reduce these sources of uncertainty by developing new techniques for stellar variability filtering and for the determination of stellar temperatures, and by robustly fitting the transits taking into account external constraints on the planet’s host star. To this end, I developed the Iterative Reconstruction Filter (IRF), a new post-detection stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it simultaneously estimates the transit signal and the stellar variability signal, using a com- bination of moving average and median filters. The IRF was tested on simulated CoRoT light curves, where it significantly improved the estimate of the transit signal, particu- lary in the case of light curves with strong stellar variability. It was then applied to the light curves of the first seven planets discovered by CoRoT, a space mission designed to search for planetary transits, to obtain refined estimates of their parameters. As the IRF preserves all signal at the planet’s orbital period, t can also be used to search for secondary eclipses and orbital phase variations for the most promising cases. This en- abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white (300–1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital phase variations. The wide optical bandpass of CoRoT limits the distinction between thermal emission and reflected light contributions to the secondary eclipse. I developed a method to derive precise stellar relative temperatures using equiv- alent width ratios and applied it to the host stars of the first eight CoRoT planets. For stars with temperature within the calibrated range, the derived temperatures are con- sistent with the literature, but have smaller formal uncertainties. I then used a Markov Chain Monte Carlo technique to explore the correlations between planet parameters derived from transits, and the impact of external constraints (e.g. the spectroscopically derived stellar temperature, which is linked to the stellar density). Globally, this PhD thesis highlights, and in part addresses, the complexity of perform- ing detailed characterisation of transit light curves. Many low amplitude effects must be taken into account: residual stellar activity and systematics, stellar limb darkening, and the interplay of all available constraints on transit fitting. Several promising areas for further improvements and applications were identified. Current and future high precision photometry missions will discover increasing numbers of small planets around relatively active stars, and the IRF is expected to be useful in characterising them.
|
4 |
Modélisation de l'interaction entre le champ magnétique d'une étoile et une planète extrasolaire proche / Interaction of a close-in extrasolar planet with the magnetic field of its host starLaine, Randy Olivier 17 July 2013 (has links)
La découverte de nombreuses planètes extrasolaires depuis 1995 est une source d’inspiration pour les modèles de formation et évolution des systèmes solaires. Une fraction de ces planètes ont un demi-grand axe inférieur à 0.1 UA; une planète qui migre à proximité de son étoile subit donc d’abord un fort vent solaire et, après son entrée dans la magnétosphère stellaire, un fort champ magnétique. Nous étudions séparemment l’interaction entre ces planètes et la composante périodique et indépendente du temps du champ magnétique dipolaire stellaire. L’interaction périodique est associée à des courants induits confinés dans la planète. Nous étudions deux effets qui pourraient augmenter le moment angulaire d’une planète gaseuse géante qui migre vers son étoile: un torque de Lorentz qui transferre du moment angulaire de la rotation de l’étoile vers l’orbite de la planète et une perte de masse induite par la dissipation ohmique dans la planète qui peut donner du moment angulaire à la planète lorsque cette masse est accrétée sur l’étoile. Nous modellisons l’interaction indépendente du temps comme un modèle d’inducteur unipolaire, dans lequel le courant induit circule dans une boucle fermée formée par la planète, le flux de tube, et le pied du flux de tube dans l’atmosphère stellaire. Nous calculons de fa con cohérente la dissipation ohmique dans la planète et le pied du flux de tube ainsi que le couple de Lorentz. Nous utilisons alors ce modèle pour expliquer l’aspect enflé de certaines planètes géantes. Finalement, nous suggérons que ce modèle permettrait également d’estimer la conductivité électrique des super-Terres qui interagissent magnétiquement avec leur étoile. / The numerous and diverse extrasolar planets detected since 1995 provide much inspiration for planetary astrophysics. A fraction of these extrasolar planets orbit their host stars at semi-major axes less than 0.1 AU; a planet which has migrated toward its host star would thus first encounter a strong magnetized wind and, as it enters the stellar magnetosphere, strong magnetic fields. We model the interaction of such a close-in extrasolar planet with the dipolar magnetic field of its host star and study separately the time-dependent and independent components. The time-dependent interaction gives rise to Eddy currents confined in the planet. We investigate two effects that may transfer angular momentum to a planet approaching its host TTauri star through type II migration: a Lorentz torque that transfers angular momentum from the stellar spin to the planetary orbit and a mass loss induced by the ohmic dissipation in the planet, which may transfer angular momentum to the planet as the gas is accreted onto the star. We model the time-independent interaction with the unipolar inductor model, which allows the current induced in the planet to flow along a closed loop constituted by the planet, the flux tube, and its footprint on the stellar atmosphere. We self-consistently calculate the ohmic dissipation in the planet and the star and the associated Lorentz torque. We then suggest that the ohmic dissipation may provide the extra energy needed to explain some planets with inflated radii. Finally, we propose that the model may also be used to remotely infer the electric conductivity of the outer layers of super-Earths interacting magnetically with their host stars.
|
Page generated in 0.0588 seconds