71 |
O bilhar stadium dependente do tempo : aceleração de Fermi e o fenômeno de retardo de velocidade /Livorati, André Luís Prando. January 2011 (has links)
Orientador: Edson Denis Leonel / Banca: Iberê Luiz Caldas / Banca: Vanderlei Marcos do Nascimento / Resumo: Neste trabalho investigamos a dinâmica de uma partícula confinada dentro de um bilhar stadium-like. Em uma primeira aproximação, consideramos as fronteiras do bilhar estáticas, encontramos um mapeamento bidimensional não linear que preserva a área no espaço de fases e que descreve a dinâmica de uma partícula clássica sofrendo reflexões especulares com a fronteira. Variando os parâmetros geométricos da fronteira, pudemos observar uma transição de caos global para caos misto, quando os pontos fixos perdem sua estabilidade. Tal transição é caracterizada pelo mecanismo desfocalizador do bilhar, pela análise estatística do desvio do ângulo médio ψ e pela invariância de escala do expoente de Lyapunov máximo. Baseado nesses itens, descrevemos o bilhar através de um mapeamento genérico que apresenta transição semelhante. Introduzimos uma perturbação temporal na fronteira e consideremos a dinâmica de duas maneiras distintas; (i) onde a partícula pode sofrer colisões sucessivas com a mesma componente e (ii) colisões indiretas. Através da linearização do mapeamento obtido na versão estática, encontramos um valor crítico de velociade de ressonância, onde velocidades iniciais com valores menores do que esse valor crítico, sofrem um decréscimo em sua velocidade devido ao fenômeno de stickiness. Contudo, se a velocidade inicial é maior do que a velocidade crítica de ressonância, temos um comportamento típico de aceleração de Fermi, onde conseguimos descrever esse crescimento ilimitado de energia da partícula através de hipóteses de escala. Quando a disipação é introduzida via colisões inelásticas da partícula com a fronteira móvel, observamos... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work we consider the dynamics of a point particle confined inside a stadium-like billiard. In a first approximation, and considering static boundaries, we construct a two-dimensional nonlinear area preserving mapping. Ranging the control parameters, we observed a transition from partial chaos to global, when the fixed points loose their stability. This transition is characterized by the defocusing mechanism. A statistical analysis of the deviation of the average angle ψ, and the scaling invariance of the maximal Lyapunov exponent, give support to this transition. We also introduced a perturbation to the boundaries. Linearizing the unperturbed mapping, we found a critical value for the resonant velocity. For initial velocities smaller than the critical one, we observe a decreasing of the particle's velocity caused by a stickiness phenomenum. However, when initial velocity is larger than the resonant one, we observe a typical behavior of Fermi acceleration, where we describe this unlimited energy growth by using scaling arguments. When dissipation is introduced via inelastic collisions, we observe a... (Complete abstract click electronic access below) / Mestre
|
72 |
Transições de fase nas dinâmicas de uma partícula se movendo em um poço ou barreira de potencial dependentes periodicamente do tempo /Costa, Diogo Ricardo da. January 2011 (has links)
Orientador: Edson Denis Leonel / Banca: Iberê Luiz Caldas / Banca: Cesar Rogerio de Oliveira / Resumo: Estudaremos algumas propriedades dinâmicas para uma partícula clássica confinada em uma caixa de potencial com potenciais infinitos nas bordas e contendo um poço ou barreira de potencial dependentes periodicamente do tempo. A dinâmica de ambos os sistemas é descrita através de mapa bidimensional, não-linear e que preserva a área no espaço de fases nas variáveis energia e tempo. Os espaços de fases são mistos e observáveis médios nos mares caóticos são descritos usando argumentos de escala. Expoentes críticos foram obtidos perto da transiçaõ de integrabilidade para não integrabilidade, assim como expoentes de Lyapunov. O formalismo apresentado aqui é robusto e pode ser estendido para diferentes tipos de mapeamentos / Abstract: Some dynamical properties for a classical particle inside a box of potential with infinite potentials at the edges and containing a time-dependent potential well or barrier are studied. The dynamics for both systems are described by a two dimensional map, non-linear and area preserving map in the variables energy and time. Critical exponents were obtained near the transition from integrability to non-integrability. Lyapunov exponents were used to characterize the chaotic dynamics. The formalism presented here is robust and can be extended to different kinds of mappings / Mestre
|
73 |
Estruturas shrimp e propriedades dinâmicas no modelo dissipativo do acelerador de Fermi /Oliveira, Amanda Prina de. January 2014 (has links)
Orientador: Edson Denis Leonel / Banca: Paulo Cesar Rech / Banca: Ricardo Egydio de Carvalho / Resumo: Neste trabalho investigamos algumas propriedades dinâmicas de dois modelos descritos por mapeamentos discretos: (i) mapa quadrático com perturbação paramétrica e; (ii) modelo do acelerador de Fermi concentrando particularmente na dinâmica dissipativa. No caso (i) e com a introdução de uma perturbação paramétrica o espaço de parâmetros é bidimensional permitindo assim um estudo de suas estruturas periódicas. Por outro lado o modelo do acelerador de Fermi descrito em (ii) consiste de uma particula clássica confinada entre duas paredes rígidas sendo uma delas fixa e outra movendo-se periodicamente no tempo. A partícula sofre colisões com ambas paredes, que assumiremos serem inelásticas. Isso implica em uma perda fracional de energia a cada choque. O são observadas nela. Mostramos que as estruturas periódicas presentes no espaço de parâmetros é bidimensional e estruturas periódicas também modelo do acelerador de Fermi obedecem a uma regra de organização descrita por uma equação diofantina / Abstract: Some dynamical properties are investigated in this work considering two models described by discret mappings: (i) a quadratic map under a parametric perturbation and; (ii) a Fermi accelerator model focusing particularly in the dissipative dynamics. In case (i) and with the introduction of a parametric perturbation the parameter space becomes two-dimensional allowing us to study periodic structures present in such space. On the other hand, the Fermi accelerator model described in case (ii), consists of a classical particle confined to bounce between two rigid walls. One of them is fixed and the other one is assumed to move periodically in time. Inelastic collisions are considered leading the particle to suffer a fractional loss of energy upon collision. The parameter space is also two-dimensional and periodic structures are observed. We show that the organization of such structures is described by a diophantine equation / Mestre
|
74 |
Localização no espaço de de Sitter em 2 + 1 dimensões / Localization on the de Sitter Space in 2+1 DimensionsRaszeja, Thiago Costa 09 December 2015 (has links)
A partir de uma versão análoga ao operador de Newton-Wigner construída para o espaço de de Sitter bidimensional, provamos que a noção de localização de Newton-Wigner também existe para o caso tridimensional. Identificamos o subespaço de uma partícula da teoria, gerado pelos modos positivos de energia da solução da equação de Klein-Gordon em coordenadas esféricas, com uma representação irredutível do grupo de de Sitter. Tais modos são compatíveis com o vácuo de Bunch-Davies e portanto eles satisfazem a condição de Hadamard. Generalizamos para 2+1 dimensões a versão de de Sitter dos postulados de localização de Newton-Wigner, considerando-se ambas as séries principal e complementar. A evolução temporal do operador de Newton-Wigner foi obtida explicitamente, e para a série complementar a evolução é trivial, i.e, não há dinâmica. Também discutimos heurísticamente a ambiguidade de sinais existente quando não exigimos como postulado que as funções de Newton-Wigner sejam proporcionais às suas respectivas soluções na representação das soluções da equação de Klein-Gordon. / From an analogue version of the Newton-Wigner operator built for the two-dimensional de Sitter space, we proved that the Newton-Wigner localization notion also exists for the three-dimensional case. We identified the one-particle subspace, generated by positive energy modes solution of the Klein-Gordon equation in spherical coordinates, with a irreducible representation of the de Sitter group. Such methods are compatible with the Bunch-Davies vacuum and thus satisfy the Hadamard condition. We generalized to 2+1 dimension the de Sitter version of the Newton-Wigner postulates considering both the principal and the complementary series. The time evolution of the Newton-Wigner operator was obtained explicitly and for the complementary series the evolution is trivial, i.e., there is no dynamics. Also we discussed heuristically the existing sign ambiguity when we do not require as postulate that the Newton-Wigner functions must be proportional to their respective solutions in the representation of solutions of the Klein-Gordon equation.
|
75 |
Séries de Lindstedt convergentes em sistemas periódicos e quase-periódicos / Lindstedt Series Interlocking Systems Periodic Quasi-periodicCortez, Daniel Augusto 23 June 2005 (has links)
Nesta tese, através de métodos perturbativos adequados, resultados rigorosos são obtidos para dois sistemas dinâmicos específicos. Primeiro, apresentamos uma investigação matemática do fenômeno de localização dinâmica em uma classe de sistemas de dois níveis periodicamente e quase-periodicamente dependente do tempo. Nossos resultados são baseados em um procedimento de eliminação iterativa de termos polinominais da série de Lindstedt, a qual é proposta como solução de uma certa equação de Riccati associada. Tal procedimento é desenvolvido aqui de uma forma sistemática para adequá-lo ao efeito de localização em qualquer ordem de perturbação. No caso quase-periódico esse procedimento nos leva apenas a uma série de Lindstedt formal bem definida. No caso periódico, uma solução perturbativa convergente é obtida e, em particular, uma expansão perturbativa convergente para a frequência secular é apresentada. O caso particular do campo monocromático é discutido em detalhes onde cômputos numéricos das soluções são apresentadas e os resultados são exibidos em termos de certas probabilidades de transição entre os dois auto-estados do sistema. Segundo, consideramos em uma equação de Hill perturbada da forma + (p IND.0(t) + p IND.1(t)) = 0 onde p IND.0 é real analítica e periódica, p IND.1 é real analítica quase-periódica e R é pequeno. Assumindo condições Diophantinas nas frequências do sistema desacoplado, i.e., as frequências dos potenciais externos p IND.0 e p IND.1 e a frequência própria da equação de Hill não-perturbado (=0), e assumindo apenas uma condição de não-degenerescência específica sobre o potencial perturbador p IND.1, provamos que soluções quase-periódicas da equação não-pertrubada são estáveis se estiver em um conjunto de Cantor de medida relativamente grande em [- IND.0. IND.0] C R, onde IND.0 é pequeno o suficiente. Nosso método é baseado em um procedimento de resoma da série de Lindstedt formal obtida como solução de uma equação de Riccati associada ao problema de Hill. Finalmente, salientamos que os sistemas acima são matematicamente aparentados. De fato, ambos passam pela solução de certas equações de Riccati bastante parecidas. Tais soluções são procuradas em termos de séries de Lindstedt expandidas em um parâmetro pertrubativo adequado. / In this thesis, through the use of suitable perturbative methods, rigorous results are obtained for two specific dynamical systems. First, we present a mathematical investigation of the phenomenon of dynamical localization in a class of quasi-periodically and periodically time-dependent two-level systems. Our results are based on an interative procedure of elimination of polynomial terms from the Lindstedt series, which is proposed as a solution of a certain associated Riccati equation. Such a procedure is developed here in a systematic way in order to adapt it to the effect of localization in any perturbative order. In the quasi-periodic case, this procedure leads only to a formal well defined Lindstedt series. In the periodic case, a convergent perturbative solution is obtained and, in particular, a convergent perturbative expansion for the secular frequency is presented. The particular case of a monochromatic field is discussed in detail, where numerical computations of the solutions are presented and results are exhibited in terms of certain transition probabilities between the two eigenstates of the system. Second, we consider a perturbed Hill\'s equation of the form + (p0(t) + p1(t)) = 0, where p0 is real analytic and periodic, p1 is real analytic and quasi-periodic and R is small. Assuming Diophantine conditions on the frequencies of the decoupled system i.e., thr frequencies of the external potentials p0nd p1 and the proper frequency of the unperturbed ( = 0) Hills equation and making only one specific non-degeneracy assumption on the perturbating potential p1, we prove that quasi-periodic solutions of the unperturbed equation are stable if lies in a Cantor set of relatively large measure in [-0,0] C R where 0 is small enough. Our method is based on a resummation procedure of a formal Lindstedt series obtained as a solution of a genrelized Riccati equation associated to Hills problem. Finally, we stress that the two systems above are mathematically related. Indeed, both pass through the solutions of certain strongly related Riccati euqations. Such solutions are scarched in terms of Lindstedt series expandend in a suitable pertrubative parameter.
|
76 |
Parametrizações otimais de trajetórias adiabáticas em sistemas quânticos dissipativos / Otimais Settings for adiabatic trajectories in dissipative quantum systemsGontijo, Marcela Muniz 20 April 2012 (has links)
Sistemas quânticos cuja dinâmica é não-unitária e que evoluem adiabaticamente apresentam características únicas com aplicações no campo da computação quântica. Estudamos nessa dissertação o formalismo de sistemas quânticos abertos, a teoria de semigrupos dinâmicos e os chamados operadores de Lindblad. Enunciamos e provamos o teorema adiabático na formulação de T. Kato a fim de entender a idéia e o formalismo por trás de regimes adiabáticos. Utilizamos essas ferramentas para descrever o problema de otimização de trajetórias adiabáticas em sistemas quânticos dissipativos (cuja dinâmica é dada por uma classe de operadores de Lindblad) e, seguindo as indicações de Avron et al. [8], obtemos as condições para que essa otimização seja única e aplicamos esse resultado em algoritmos quânticos de busca. / Quantum systems whose dynamics is non-unitary and develop adiabatically exhibit unique characteristics with applications in the field of quantum computing. We study in this dissertation formalism of open quantum systems, the theory of dynamical semigroups and called Lindblad operators. We state and prove the adiabatic theorem in Kato T. formulation in order to understand the idea and the formalism behind adiabatic regimes. We use these tools to describe the adiabatic trajectory optimization problem in dissipative quantum systems (whose dynamics is given by a Lindblad operator class) and following the advice of Avron et al. [8], we obtain the conditions for this optimization is unique and apply this result in search of quantum algorithms.
|
77 |
Localização no espaço de de Sitter em 2 + 1 dimensões / Localization on the de Sitter Space in 2+1 DimensionsThiago Costa Raszeja 09 December 2015 (has links)
A partir de uma versão análoga ao operador de Newton-Wigner construída para o espaço de de Sitter bidimensional, provamos que a noção de localização de Newton-Wigner também existe para o caso tridimensional. Identificamos o subespaço de uma partícula da teoria, gerado pelos modos positivos de energia da solução da equação de Klein-Gordon em coordenadas esféricas, com uma representação irredutível do grupo de de Sitter. Tais modos são compatíveis com o vácuo de Bunch-Davies e portanto eles satisfazem a condição de Hadamard. Generalizamos para 2+1 dimensões a versão de de Sitter dos postulados de localização de Newton-Wigner, considerando-se ambas as séries principal e complementar. A evolução temporal do operador de Newton-Wigner foi obtida explicitamente, e para a série complementar a evolução é trivial, i.e, não há dinâmica. Também discutimos heurísticamente a ambiguidade de sinais existente quando não exigimos como postulado que as funções de Newton-Wigner sejam proporcionais às suas respectivas soluções na representação das soluções da equação de Klein-Gordon. / From an analogue version of the Newton-Wigner operator built for the two-dimensional de Sitter space, we proved that the Newton-Wigner localization notion also exists for the three-dimensional case. We identified the one-particle subspace, generated by positive energy modes solution of the Klein-Gordon equation in spherical coordinates, with a irreducible representation of the de Sitter group. Such methods are compatible with the Bunch-Davies vacuum and thus satisfy the Hadamard condition. We generalized to 2+1 dimension the de Sitter version of the Newton-Wigner postulates considering both the principal and the complementary series. The time evolution of the Newton-Wigner operator was obtained explicitly and for the complementary series the evolution is trivial, i.e., there is no dynamics. Also we discussed heuristically the existing sign ambiguity when we do not require as postulate that the Newton-Wigner functions must be proportional to their respective solutions in the representation of solutions of the Klein-Gordon equation.
|
78 |
Uma estratégia euclidiana para o estudo do efeito Unruh / An euclidean approach as a method to study the Unruh effectPedro Tavares Paes Lopes 18 June 2007 (has links)
Neste trabalho nós propomos uma estratégia Euclidiana para entender o efeito Unruh. Com este objetivo, nós inicialmente o estudamos para campos livres escalares sem massa, numa forma que é normalmente apresentada aos físicos e que é mais próxima ao trabalho original de Unruh I321| . Logo em seguida, deduzimos o efeito de um ponto de vista algébrico. Com este objetivo, estudamos as propriedades e as definições de estados KMS para compreender como um estado de equilíbrio é descrito na abordagem algébrica. Apresentamos os axiomas de Wightman para campos escalares assim como os de Osterwalder-Schrader. Usamos, então, o Teorema de Bisognano-Wichmann para estes campos e concluímos, baseados no trabalho de Sewell [27], que um observador uniformemente acelerado vê o estado de vácuo dos observadores inerciais como um estado KMS, e portanto, como um estado de equilíbrio. Novamente, concluímos a existência do efeito Unruh. Finalmente estudamos algumas relações entre probabilidade e análise funcional. Este estudo é fundamental para o entendimento do trabalho de Klein e Landau [15] e de Gérard e Jakel [7]. Estes trabalhos afirmam que existe uma relação biunívoca entre certos estados KMS e certos processos estocásticos (Klein e Landau) e uma relação entre certos processos estocásticos e espaços de trajetórias generalizados (Gérard e Jakel). Usando estes trabalhos e as funções de Schwinger para campos escalares, deduzimos o efeito Unruh de uma nova maneira. Acreditamos que este trabalho mostra um ponto de vista interessante do efeito Unruh e ilustra o uso do formalismo Euclidiano em teorias quânticas dos campos. Mesmo que algumas demonstrações para uma prova completa do efeito, usando técnicas Euclidianas, não são obtidas, devido às dificuldades técnicas encontradas, acreditamos que o material apresentado neste trabalho fornece, no mínimo, uma boa estratégia para a compreensão completa deste fenômeno físico. Além disto, as técnicas que são mostradas podem ser usadas em diversos problemas, como a construção de campos interagentes a uma temperatura finita, que permanecem atuais e promissores. / This paper proposes a Euclidean strategy to understand the Unruh effect. On that ground we first study it for free massless scalar fields the way it is usually presented to pliysicists, which is closer to Unruh\'s original work [32]. Then we infer the effect from an algebraic perspective. We study the proprieties and definitions of KklS states in order to understand the description of an equilibrium state in the algebraic approach. We present the Wightman\'s as well as Osterwalder-Schrader\'s axioms for scalar fields. Then we use the Bisognano-Wichmann theorem for these fields and conclude, based on Sewell work 1271, that a uniformly accelerated observer will observe tlie vacuum state of inertial observers as a KMS state and thus as an equilibrium state. Once again we infer the existence of the Cnruh effect. Finally we study some relations between probability and functional analysis. This study is crucial for understanding the work of Klein and Landau 1151 as well as of Gérard and Jakel (71. They state there is a biunivocal relation between certain KMS states and certain stochastic processes (Klein and Landau) and a relation between certain stochastic processes and generalized path spaces (Gérard and Jakel). Lsing these works and Schwinger functions for scalar fields, we deduce tlie Unruh effect in a new way. LVe believe this work shows an interesting aspect of the Unruh effect and represents the use of Euclidean formalism in quantum field theory. Although some demonstrations for a complete proof of the Unruh effect using Euclidean techniques were not obtained due to technical difficulties we faced, we believe the material presented in this paper provides at least a good strategy for the complete understanding of this physical phenomenon. Furthermore the techniques shown, which remain current and promising, can be used in different problems, sudy as the construction of interacting fields at a finite temperature.
|
79 |
Efeitos cosmológicos induzidos por campos quantizados / Cosmological effects induced by quantized fieldsOtani, Yul 30 September 2010 (has links)
A presente dissertação revisa um modelo, de autoria de C. Dappiaggi, K. Fredenhagen e N. Pinamonti, de um campo escalar real quântico não-interagente acoplado com a métrica de um espaço-tempo FLRW (Friedmann-Lemaítre-Robertson-Walker). Apresentamos a metodologia de quantização de campos de Klein-Gordon reais em espaçostempos globalmente hiperbólicos e discorremos sobre o procedimento de regularização do tensor de energia-momento via point-splitting. Consideramos os campos em espaços FLRW e estados adiabáticos com flutuação média de campo dado por h2i = m2 +R, com ; constantes provenientes do procedimento de regularização. A retroação do campo quântico gera a equação diferencial para o parâmetro de Hubble H(t) dada por _H (H2H2 c ) = (H2H2+ )(H2H2 ) com Hc uma constante e H pontos críticos estáveis da equação. Esse simples modelo mostra que efeitos quânticos podem, por si só, fornecer fases de de Sitter estáveis sem adição de uma constante cosmológica a priori. Mesmo que de caráter apenas qualitativo, tal resultado indica que análises cautelosas de processos de quantização são importantes para análise de efeitos cosmológicos de teorias quânticas de campos em espaços curvos. / The present dissertation reviews the coupling of a scalar non-interacting quantum field with the metric of a FLRW(Friedmann-Lemaítre-Robertson-Walker) spacetime, proposed in a work by C. Dappiaggi, K. Fredenhagen and N. Pinamonti. We present methods for the quantization of a real Klein-Gordon field in globally hyperbolic spacetimes and discuss procedures for the point-splitting regularization of the stress-energy tensor. We consider those fields in FLRWspacetimes and point out adiabatic states with mean field fluctuation given by h2i = m2+R, with ; being constants that emerge from the regularization procedure. The backreaction of the quantum field provides a diferential equation for the Hubble parameter given by _H (H2H2 c ) = (H2H2+)(H2H2) with Hc a constant and H stable critical points of the equation. In this way, this simple model demonstrates that quantum efects may, by themselves, exibit stable de Sitter phases even without an introduction of a cosmological constant by hand. Althoug in a qualitative way, such result shows that, when dealing with the backreaction issue, a careful analysis of the quantization procedures is important for the analysis of cosmological efects of models of quantum field theories in curved spacetimes.
|
80 |
A equação de Boltzmann e a modelagem de fluídos em micro e macroescalasProlo Filho, João Francisco January 2007 (has links)
Neste trabalho, uma versão analítica do método de ordenadas discretas (ADO) é utilizada no desenvolvimento de soluções para uma ampla classe de problemas de gases rarefeitos em semi-espa»co e canal plano. A modelagem dos problemas baseada em modelos cinéticos derivados da equação linearizada de Boltzmann, tais como os modelos BGK, o S, o Gross-Jackson e o MRS. Em particular, resultados para o modelo MRS são originais. A solução ADO se mostrou eficiente e precisa e uma série de resultados são apresentados no sentido de estabelecer uma comparação entre os modelos propriamente ditos e resultados obtidos a partir da ELB. Além disso, uma análise da influência de alguns parâmetros é apresentada, para todos os problemas. / In this work, an analytical version of the discrete-ordinates method (the ADO method) is used to develop solutions for a wide class of rare¯ed gas problems in half- space and plane channel. The modelling of the problems is based on kinetic models of the linearized Boltzmann equation, such that the BGK, the S, the Gross-Jackson and the MRS models. In particular, results for the MRS model are originals. The ADO solution was founded to be e±cient and accurate and a series of results are presented in order to establish a comparison between the kinetic models themselves and results provided by the ELB. In addition, an analysis of the in°uence of some parameters was presented, for all problems.
|
Page generated in 0.074 seconds