121 |
Sin Recursos: El paradigma de la escasez como principio creativo en el proyecto arquitectónicoLillo Navarro, Manuel 29 December 2015 (has links)
[EN] There is no genuine creation without scarcity. Any creative outcome, like architecture itself or the architectural project, comes up as a reaction against a problem, a disturbance, an inbalance, therefore it is not trivial, and carries at its core, like nature itself, a short of rationality embodied in the shortage of means. It will be argued that architecture's poetic virtue, that is, the emergence of the architectural project, is in accepting as much scarcity as possible. / [ES] No hay creación genuina si no nace de la escasez. Todo acto creativo, como la arquitectura y el proyecto arquitectónico, surge como oposición o reacción frente a un problema, a una resistencia, a un desequilibrio, y por ello, no es gratuita y lleva en su génesis, como la propia naturaleza, una suerte de racionalidad implícita en la economía de medios. Se argumentará que la virtud de la arquitectura, siempre de la óptica de su poética, esto es, desde el proyecto arquitectónico, está precisamente en asumir la máxima escasez posible. / [CA] No hi ha creació genuïna si no naix de l'escassetat. Tot acte creatiu, com l'arquitectura i el projecte arquitectònic, sorgeix com a oposició o reacció enfront d'un problema, a una resistència, a un desequilibri, i per això, no és gratuïta i porta en la seva gènesi, com la pròpia naturalesa, una mena de racionalitat implícita en l'economia de mitjans. S'argumentarà que la virtut de l'arquitectura, sempre de l'òptica de la seva poètica, és a dir, des del projecte arquitectònic, està precisament en assumir la màxima escassetat possible. / Lillo Navarro, M. (2015). Sin Recursos: El paradigma de la escasez como principio creativo en el proyecto arquitectónico [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59226
|
122 |
Estudio del comportamiento por crecimiento de grieta de aleaciones fabricadas por adición mediante haz de electronesNiñerola González, Rubén 04 July 2022 (has links)
[ES] Los procesos convencionales de transformación de materiales requieren afrontar nuevos retos que se presentan en la actual sociedad industrial como es la propia sostenibilidad medioambiental. De la misma forma, los productos fabricados en el futuro deberán cumplir ciertos requisitos medioambientales, como la reciclabilidad de la materia prima utilizada. Dentro de este contexto la fabricación de productos mediante técnicas tridimensionales como la fabricación aditiva, permite utilizar únicamente el material necesario que se requiere para un producto completo.
Dichas técnicas de fabricación son las solicitadas por el sector aeronáutico, entre otros, que requiere de unos valores de calidad muy exigentes. Dentro de estos ensayos, el estudio del comportamiento del material ante crecimiento de grieta es de gran importancia. Mediante este tipo de fabricación se obtiene un producto en estado casi final a través de la adición de capas de alrededor de 100 micras, que da como resultado una orientación de grano metalúrgico preferente y diferente a la misma aleación fabricada por forja convencional.
Los fenómenos ocurridos durante la fabricación pueden dar lugar a defectos como grietas o porosidades que disminuyen las capacidades resistentes, por lo que un estudio para predecir la vida del componente es importante. Dentro de los procesos de fabricación aditiva nos encontramos con la fabricación por haz de electrones, que consigue calidades de material casi con porosidad nula, por lo que empresas del sector aeronáutico o médico consideran esta técnica como de gran fiabilidad.
El trabajo desarrollado en esta tesis se basa en el estudio de aleaciones de titanio fabricadas mediante fabricación aditiva por haz de electrones. En concreto, el estudio se centra en el comportamiento a tenacidad a la fractura para relacionarlo con las características microestructurales más relevantes. Los análisis llevados a cabo consideran diversas orientaciones que tienen lugar en la bandeja de fabricación, realizándose ensayos mecánicos tanto estáticos como dinámicos.
Una segunda parte de la tesis se basa en el modelado mediante elementos finitos extendido, XFEM, que se desarrolla como alternativa a los métodos tradicionales de mallado. En el XFEM una aproximación de elementos finitos se construye de forma que sea capaz de representar funciones de enriquecimiento dentro de los elementos mediante grados de libertad adicionales. Un punto crítico en el proceso de cálculo mediante elementos finitos es el proceso de mallado. La precisión obtenida en la aproximación depende del tamaño de los elementos de la malla. Por tanto, el cálculo con precisión en puntos importantes como la zona cercana a grieta exige una malla con un tamaño de elemento muy pequeño. Con la técnica XFEM se alcanza una mayor precisión mediante un proceso de enriquecimiento de extremo de grieta.
Los resultados que ofrece la herramienta XFEM se comparan con los obtenidos experimentalmente con componentes fabricados mediante impresión 3D. Esta comparativa se lleva a cabo sobre diversas geometrías con la presencia de agujeros, de tal forma que se ha podido predecir el crecimiento de grieta que tiene lugar en materiales por impresión 3D. De la misma forma, se llevan a cabo comparativas de piezas con geometría compleja, para validar el modelo desarrollado. / [CA] Els processos convencionals de transformació de materials requereixen afrontar nous reptes que es presenten en l'actual societat industrial com és la pròpia sostenibilitat mediambiental. De la mateixa forma, els productes fabricats en el futur hauran de complir certs requisits mediambientals, com el reciclatge de la matèria primera. Dins d'aquest context, la fabricació de productes mitjançant tecnologia 3D com la fabricació additiva, permet usar només el material necessari que es requereix per a un producte complet.
Aquestes tècniques de fabricació són les sol·licitades pel sector aeronàutic que requereix d'uns valors de qualitat molt exigents. Dins d'aquests assajos, l'estudi del comportament del material a través de creixement de clivella és vital. Mitjançant aquesta mena de fabricació s'obté un producte en estat quasi final a través de l'addició de capes d'alçària al voltant de 100 micres, que dona com a resultat una orientació de gra metal·lúrgic preferent i diferent al mateix però fabricat convencionalment.
Els fenòmens ocorreguts durant la fabricació poden donar lloc a defectes com a clivelles o porositats que poden disminuir les capacitats resistents, per la qual cosa un estudi per a predir la vida del material és important. Dins dels processos de fabricació additiva ens trobem amb la fabricació per feix d'electrons la qual aconsegueix qualitats de material quasi amb porositat nul·la, per la qual cosa empreses del sector aeronàutic i mèdic han conclòs a aquesta tècnica com la més fiable.
El treball desenvolupat en aquesta tesi es basa en l'estudi d'aliatges de titani fabricades mitjançant fabricació additiva per feix d'electrons, principalment el seu comportament a la tenacitat a la fractura per a relacionar-ho amb les característiques microestructurals més rellevants. Les anàlisis dutes a terme se centren en diverses orientacions que tenen lloc en la plataforma de fabricació, realitzant-se assajos mecànics tant estàtics com dinàmics.
Una segona part de la tesi es basa en el modelatge mitjançant elements finits estesos, XFEM, que es desenvolupa com a alternativa als mètodes lliures de malla. En el XFEM una aproximació d'elements finits es construeix de manera que siga capaç de representar funcions (enriquiment) dins dels elements. Un punt crític en el procés de càlcul en qualsevol mètode que usa una malla és el procés d'emmallat. La precisió obtinguda en l'aproximació depén de la grandària dels elements de malla. Per tant, el càlcul amb precisió en punts importants, com la zona pròxima a clivella, exigeix l'ús d'una malla amb una grandària d'element molt xicoteta. Amb la tècnica XFEM aconseguim aqueixa precisió mitjançant un procés de enriquiment. / [EN] Conventional material transformation processes require facing new challenges that arise in today's industrial society, such as environmental sustainability. Similarly, products manufactured in the future must meet certain environmental requirements, such as the recyclability of the raw material used. Within this context, the manufacture of products using 3D technology such as additive manufacturing, allows using only the necessary material that is required for a complete product.
These manufacturing techniques are requested by the aeronautical sector, which requires very demanding quality values. Within these tests, the study of the behavior of the material through crack growth is of great importance. By means of this manufacturing technology, a product is obtained in an almost final state through the addition of layers of about 100 microns, which results in a preferential metallurgical grain orientation and different from the same alloy manufactured by conventional methods.
The phenomena occurring during manufacturing can lead to defects such as cracks or porosities that can reduce the strength capabilities, so a study to predict the life of the component is important. Within the additive manufacturing processes we find the electron beam manufacturing which achieves material qualities with almost zero porosity. As a consequence, companies in the aeronautical or medical sector have concluded this technique as very reliable.
The work developed in this thesis is based on the study of titanium alloys manufactured by electron beam additive manufacturing. More precisely, the work is focused on the fracture toughness behavior in order to relate it to the most relevant microstructural characteristics. The analyses carried out consider different orientations and positions that take place in the fabrication tray, performing both static and dynamic mechanical tests.
A second part of the thesis is based on the application of the extended finite element method, XFEM, which is developed as an alternative to conventional finite element method. In XFEM a finite element approximation is constructed in such a way that it is able to represent functions within the elements. A critical point in the calculation process in the finite element method is the meshing process. The accuracy obtained in the approximation depends on the size of the elements of the mesh. Therefore, accurate computation at important points such as the near-crack zone requires the use of a mesh with a very small element size. With the XFEM technique, we achieve this accuracy by means of an enrichment process.
The results provided by the XFEM tool are compared with those obtained experimentally with respect to components manufactured by 3D printing. This comparison is carried out on different geometries with the presence of holes, in such a way that it has been possible to predict the crack growth that takes place in 3D printed materials. In the same way, comparisons of parts with complex geometry are carried out to validate the developed model. / Niñerola González, R. (2022). Estudio del comportamiento por crecimiento de grieta de aleaciones fabricadas por adición mediante haz de electrones [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183818
|
123 |
Development of Non-Conventional Microwave Devices Based on Substrate-Integrated Technology for Advanced ApplicationsNova Giménez, Vicente 26 February 2024 (has links)
[ES] El uso masivo de los sistemas de comunicaciones inalámbricas y móviles ha tenido un impacto significativo en nuestra sociedad. Estas tecnologías han experimentado una amplia adopción en el mercado, volviéndose totalmente indispensables en nuestro día a día y provocando un aumento notable en la demanda de movilidad y ancho de banda. Esto ha llevado a la rápida aparición de nuevos sistemas de comunicación y a la progresiva saturación del espectro radioeléctrico, lo que conlleva un constante aumento en los requisitos de los sistemas de radiofrecuencia. Como resultado, los dispositivos que forman parte de estos sistemas se ven sometidos a especificaciones cada vez más restrictivas. Estas restricciones se han visto fuertemente incrementadas en las comunicaciones espaciales, donde los nuevos sistemas basados en satélite de alta capacidad y grandes constelaciones fuerzan la reducción de costes a la vez que requieren de altas prestaciones.
Con el fin de satisfacer las crecientes demandas de los sistemas inalámbricos, se busca el desarrollo de dispositivos de comunicación que ofrezcan altas prestaciones a bajo costo. Estos dispositivos también deben ser compactos, ligeros y fáciles de integrar con diversas tecnologías de guiado de ondas (guías de ondas, cables coaxiales y tecnologías planares). En respuesta a estas necesidades, han surgido dos soluciones tecnológicas: los circuitos integrados en sustrato (SIC) y la fabricación aditiva (AM).
La tecnología SIC permite combinar tecnologías de guiado planares y no planares en un mismo sistema, lo que resulta en unas prestaciones híbridas entre ambas tecnologías. Además, ofrece una notable reducción de peso y una gran miniaturización y su naturaleza planar permite una integración nunca vista.
Por otro lado, la fabricación aditiva permite crear dispositivos con geometrías complejas y bajo peso, lo que proporciona menos limitaciones en el diseño. Esto permite el desarrollo de dispositivos con características avanzadas y la integración de los diferentes bloques de una cadena de radiofrecuencia en un único dispositivo, mejorando así las especificaciones del sistema y reduciendo su complejidad.
Tanto la tecnología SIC como la fabricación aditiva son de gran interés para el sector espacial. Sin embargo, la aplicación de estas tecnologías en el agresivo entorno espacial aún no ha sido estudiada. Por ello, el objetivo principal de esta tesis es precisamente investigar la aplicación de estas tecnologías al diseño de dispositivos de microondas para aplicaciones espaciales. Con este estudio, se busca obtener un mayor conocimiento de las capacidades y limitaciones de estas tecnologías en el contexto espacial, y así explorar su potencial para mejorar y optimizar los dispositivos utilizados en este tipo de sistemas.
En primer lugar, se ha llevado a cabo una comparación de diferentes topologías de filtros implementados en tecnología SIC, los cuales han sido sometidos a pruebas ambientales que simulan las condiciones reales de operación en el espacio.
En segundo lugar, se ha estudiado la aplicación de técnicas de fabricación aditivas al desarrollo de dispositivos de microondas. Para ello, se ha desarrollado un novedoso método de metalización y un sistema de integración de filtros de montaje superficial. Con estas tecnologías se han desarrollado una serie de filtros paso banda que han sido sometidos a pruebas de ambiente espacial, incluyendo: ciclado térmico, pruebas de vibración y test de efecto multipactor.
Por último, se ha estudiado el uso de cristal líquido para agregar capacidades de reconfigurabilidad a dispositivos SIC. Se han analizado las características mecánicas y electromagnéticas de estos materiales mediante dos métodos de caracterización basados en elementos resonantes. Además, se ha desarrollado un demostrador tecnológico basado en la tecnología ESICL. / [CA] L'ús massiu dels sistemes de comunicacions sense fils i mòbils ha tingut un impacte significatiu en la nostra societat. Aquestes tecnologies han experimentat una àmplia adopció en el mercat, perquè s'han tornat totalment indispensables en el nostre dia a dia i han provocat un augment notable en la demanda de mobilitat i amplada de banda. Al seu torn, això ha portat a la ràpida aparició de nous sistemes de comunicació i a la progressiva saturació de l'espectre radioelèctric, la qual cosa comporta un constant augment en els requisits dels sistemes de radiofreqüència. Com a resultat, els dispositius que formen part d'aquests sistemes es veuen sotmesos a especificacions cada vegada més restrictives. Aquestes restriccions s'han vist fortament incrementades en les comunicacions espacials.
Amb la finalitat de satisfer les creixents demandes dels sistemes sense fils, se cerca el desenvolupament de dispositius de comunicació que oferisquen altes prestacions a baix cost. Aquests dispositius també han de ser compactes, lleugers i fàcils d'integrar amb diverses tecnologies de guia d'ones (guies d'ones, cables coaxials i tecnologies planar). En resposta a aquestes necessitats, han sorgit dues soluciones tecnològiques: els circuits integrats en substrat (SIC) i la fabricació additiva (AM).
La tecnología SIC permet combinar tecnologies de guiatge planars i no planars en un mateix sistema, la qual cosa resulta en unes prestacions híbrides. A més, ofereix una notable reducció de pes i una gran miniaturització i la seua naturalesa planar permet una integració no vista mai abans.
D'altra banda, la fabricació additiva permet crear dispositius amb geometries complexes i baix pes, la qual cosa proporciona menys limitacions en el disseny. Això permet el desenvolupament de dispositius amb característiques avançades i la integració dels diferents blocs que conformen la cadena de radiofreqüència, que millora així les especificacions del sistema i en redueix la complexitat.
Tant la tecnologia SIC com la de fabricació additiva són de gran interès per al sector espacial. Tanmateix, l'aplicació d'aquestes tecnologies en l'agressiu entorn espacial encara no ha sigut estudiada. Per això, l'objectiu principal d'aquesta tesi és investigar l'aplicació d'aquestes tecnologies en el disseny de dispositius de microones per a aplicacions espacials. A través d'aquest estudi, se cerca obtenir un major coneixement sobre les capacitats i limitacions d'aquestes tecnologies en el context espacial.
En primer lloc, s'ha dut a terme una comparació de diferents topologies de filtres implementats en tecnologia SIC, els quals han sigut sotmesos a proves ambientals que simulen les condicions reals d'operació a l'espai.
En segon lloc, s'ha estudiat l'aplicació de tècniques de fabricació additives al desenvolupament de dispositius de microones. Per a això, s'ha desenvolupat un nou mètode de metal·lització autocatalític i un sistema d'integració de filtres de muntatge superficial. Aquestes tecnologies s'han combinat per a desenvolupar una sèrie de filtres passabanda de muntatge superficial. Finalment, aquests filtres han sigut sotmesos a proves d'ambient espacial, incloent-hi: ciclatge tèrmic, proves de vibració i test d'efecte multipactor.
Finalment, s'ha estudiat l'ús de cristall líquid per a agregar capacitats de reconfigurabilitat a dispositius de microones integrats en substrat. S'han analitzat les característiques mecàniques i electromagnètiques d'aquests materials mitjançant dos mètodes de caracterització basats en elements ressonants. A més, s'ha desenvolupat un demostrador tecnològic basat en la tecnologia ESICL. / [EN] The widespread use of wireless and mobile communication systems has had a significant impact on our society. These technologies have been widely adopted in the market, becoming essential in our daily lives and leading to a notable increase in the demand for mobility and bandwidth. Consequently, new communication systems are rapidly emerging, and the radio frequency spectrum is becoming increasingly crowded, resulting in continuously rising requirements for radio frequency systems. As a result, radio frequency devices are subjected to ever more stringent specifications. These restrictions are particularly heightened in space communications.
To meet the growing demands of wireless systems, there is a need to develop communication devices that offer high performance at a low cost. Additionally, these devices should be compact, lightweight, and easily integrable with various waveguide technologies (waveguides, coaxial cables, and planar technologies). In response to these needs, two technological solutions have emerged: Substrate Integrated Circuits (SIC) and Additive Manufacturing (AM).
SIC technology combines planar and non-planar guiding technologies in a single system, resulting in hybrid performance between both technologies. It significantly reduces weight and miniaturisation, and its planar nature allows for unprecedented integration.
On the other hand, additive manufacturing enables the creation of devices with complex geometries and low weight, providing fewer design limitations. This allows for the development of devices with advanced features and the integration of different blocks of the radio frequency chain, thereby enhancing the performance of the entire system and reducing its complexity.
Both SIC and AM are of great interest to the space sector. However, the application of these technologies in the harsh space environment has not been thoroughly studied. The main objective of this thesis is to investigate the application of these technologies in the design of microwave devices for space applications. This study aims to gain a deeper understanding of the capabilities and limitations of these technologies in the space context and explore their potential for improving and optimising devices used in such systems.
The thesis first involves the design and comparison of different filter topologies implemented using SIC technology, which has been subjected to environmental tests simulating real space operation conditions.
Secondly, the application of additive manufacturing techniques to the development of microwave devices has been studied. For this purpose, a novel metallisation method and a system for surface-mounted filter integration have been developed. These technologies were combined to develop a series of surface-mounted bandpass filters. Finally, these filters were subjected to space environmental tests, including thermal cycling, vibration tests, and multipactor effect tests.
Lastly, the use of liquid crystal to add reconfigurability capabilities to substrate-integrated microwave devices has been investigated. The mechanical and electromagnetic characteristics of these materials have been analysed using two resonant element-based characterisation methods. Additionally, a technological demonstrator based on ESICL technology has been developed. / Nova Giménez, V. (2024). Development of Non-Conventional Microwave Devices Based on Substrate-Integrated Technology for Advanced Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202844
|
124 |
Analysis of osteoporosis effect on the mechanical behaviour and morphometry of human cancellous boneMegías Díaz, Raquel 18 July 2024 (has links)
[ES] En esta tesis, el principal objetivo es analizar el efecto de la osteoporosis en el comportamiento mecánico del hueso trabecular. El comportamiento del hueso trabecular se ha abordado desde diferentes enfoques: ensayos experimentales, modelos de elementos finitos (EF) e imagen médica obtenida por micro-CT.
El impacto de la osteoporosis se ha estudiado en distintas escalas. Se ha abordado un estudio a nivel de tejido lamelar del hueso trabecular para estimar las ecuaciones que nos permitan definir las propiedades elásticas y resistentes en función de la densidad mineral ósea y la porosidad del tejido. Estas ecuaciones inferidas en los modelos de EF permitirán estudiar el comportamiento del tejido óseo lamelar abarcando un amplio rango de porosidades y DMOs.
Se ha realizado un estudio de la estructura trabecular y del tejido lamelar utilizando un estereomicroscopio y el FESEM. Al nivel del tejido lamelar, se ha podido observar la disposición de las lamelas en distintas localizaciones, como en las trabéculas y sus intersecciones. Además, se ha podido evaluar la porosidad tisular natural y la producida por enfermedades óseas. Esta información se ha introducido en los modelos EF para definir las propiedades en las muestras. Las ecuaciones elásticas y resistentes estimadas consideran un comportamiento ortótropo y es posible cuantificar cómo afectan la DMO y la porosidad a estas propiedades.
Se ha estudiado el comportamiento mecánico a compresión de muestras humanas de hueso trabecular procedente de cabezas femorales. Estas muestras se clasifican en tres grupos: sano, artrósico y osteoporótico. Estas muestras se han estudiado mediante ensayos experimentales, imagen médica y modelos de EF, permitiendo obtener gran información sobre el comportamiento mecánico del hueso. La respuesta mecánica está muy influenciada por la microarquitectura trabecular. Los resultados obtenidos más relevantes son el módulo aparente, la tensión de fallo y la deformación de fallo. Se han podido generar modelos de EF y estudiar la morfometría de las muestras. Los modelos de EF han permitido estimar las propiedades a nivel de tejido: módulo de Young a nivel de tejido y las deformaciones de fluencia y fallo. Los resultados muestran que a nivel de tejido no se aprecian variaciones en el módulo de Young aunque el hueso presente una patología ósea. Un comportamiento de fluencia similar se ha observado para todos los grupos, con diferencias únicamente en la deformación de fallo.
El estudio morfométrico permite analizar los parámetros morfométricos que diferencian las muestras sanas de las enfermas. Se han correlacionado dichos parámetros con la respuesta mecánica para analizar los que tienen mayor influencia sobre ella. Las correlaciones permiten estimar la respuesta mecánica del hueso utilizando imagen médica sin realizar ensayos experimentales. Los parámetros obtenidos de la respuesta mecánica también se han relacionado entre sí, permitiendo conocer el comportamiento de cada una de las muestras que es diferente según la enfermedad que padecen.
También, se han estudiado muestras bioinspiradas y estructuras TPMS obtenidas mediante fabricación aditiva. Estas muestras se han fabricado con PLA como material de impresión. Las muestras muestran un comportamiento ortótropo como las muestras trabeculares. Los simulantes pueden ser utilizados para hacer estudios previos cuando no se disponga de las muestras óseas. El tratamiento de fracturas óseas de gran tamaño requiere de técnicas no convencionales para la fijación del hueso. Suelen utilizarse andamios óseos con triple periodicidad que tienen como resultado propiedades ortótropas iguales en las tres direcciones ortogonales. Estos sistemas deben disponer de rigideces similares al hueso alrededor del defecto para evitar el aflojamiento del implante. Por ello, se propone una metodología que permite diseñar andamios óseos paciente-específicos que permiten ajustar las propiedades mecánicas ortótropas en función del hueso. / [CA] En esta tesi, el principal objectiu és analitzar l'efecte de l'osteoporosi en el comportament mecànic de l'os trabecular. El comportament de l'os trabecular s'ha abordat des de diferents plantejaments, com són els assajos experimentals, els models d'elements finits (EF) i la imatge mèdica obtinguda per micro-CT.
L'impacte de l'osteoporosi s'ha estudiat en diferents escales. En primer lloc, s'ha abordat un estudi a nivell de teixit lamellar de l'os trabecular per a estimar les equacions que ens permeten definir les propietats elàstiques i resistents en funció de la densitat mineral òssia i la porositat del teixit. Estes equacions inferides en els models d'EF permetran estudiar el comportament del teixit ossi lamel·lar abastant un ampli rang de porositats i DMOs.
S'ha realitzat un estudi de l'estructura trabecular i del teixit lamel·lar utilitzant un estereomicroscopi i el FESEM. Al nivell del teixit lamel·lar, s'ha pogut observar la disposició de les lamel·les en diferents localitzacions, com en les trabècules i les seues interseccions. A més, s'ha pogut avaluar la porositat tissular natural i la produïda per malalties òssies. Tota esta informació ha sigut incorporada als models numèrics per a poder definir les propietats en les mostres trabeculars. Les equacions elàstiques i resistents estimades consideren un comportament ortòtrop i és possible quantificar com afecten la DMO i la porositat a estes propietats.
S'ha estudiat el comportament mecànic a compressió de mostres humanes d'os trabecular procedent de caps femorals i s'han classificat en tres grups: sa, artròsic i osteoporòtic. S'han estudiat mitjançant assajos experimentals, imatge médica i models d'EF, obtenint gran informació sobre el comportament mecànic de l'os. La resposta mecànica està fortament influenciada per la microarquitectura trabecular. Els resultats obtinguts més importants són el mòdul aparent, la tensió de fallada i la deformació de fallada. S'han generat models d'EF i estudiat la morfometria. Els models d'EF han permés estimar les propietats a nivell de teixit: el mòdul de Young a nivell de teixit i les deformacions de fluència i fallada. A nivell de teixit no s'aprecien variacions en el mòdul de Young encara que l'os present una patologia òssia. Un comportament de fluència similar s'ha observat per a tots els grups, amb diferències únicament en la deformació de fallada.
L'estudi de la morfometria ha permés analitzar els paràmetres morfomètrics que diferencien les mostres sanes de les malaltes, i fins i tot a diferenciar entre diferents patologies. S'han correlacionat estos paràmetres amb la resposta mecànica per a analitzar aquells que tenen major influència sobre ella. Les correlacions obtingudes permeten estimar la resposta mecànica de l'os trabecular utilitzant les imatges micro-CT sense necessitat de realitzar assajos experimentals. Els paràmetres obtinguts de la resposta mecànica també s'han relacionat entre si. Estes relacions permeten conéixer el comportament de cadascuna de les mostres que és diferent segons la malaltia que patixen.
També, s'han estudiat mostres bioinspirades i estructures TPMS obtingudes mitjançant fabricació additiva. Estes mostres bioinspirades s'han fabricat amb PLA com a material d'impressió. Les mostres mostren un comportament ortòtrop com les trabeculars. Estos simulants poden ser utilitzats per a fer estudis previs quan no es dispose de les mostres òssies. El tractament de fractures òssies de gran grandària requerix de tècniques no convencionals per a la fixació de l'os. Solen utilitzar-se bastides òssies amb triple periodicitat que tenen com a resultat propietats ortòtropes iguals en les tres direccions ortogonals. Estos sistemes han de disposar de rigideses similars a l'os en el veïnatge del defecte per a evitar l'afluixament de l'implant. S'ha proposat una metodologia que permet dissenyar bastides òssies pacient-específics que permeten ajustar les propietats mecàniques ortòtropes en cada direcció en funció de l'os. / [EN] The main objective of this thesis is to analyse the effect of osteoporosis on the mechanical behaviour of cancellous bone. The behaviour of cancellous bone has been addressed through different approaches: experimental tests, finite element (FE) models and medical imaging obtained by micro-CT.
The impact of osteoporosis has been studied on different scales. Firstly, a study has been undertaken at the lamellar tissue level of trabecular bone to estimate the equations that define the elastic and strength properties as a function of bone mineral density and tissue porosity. These equations are inferred from FE models and allow us to characterise the behaviour of lamellar bone tissue covering a wide range of porosities and BMDs.
A study of the cancellous structure and lamellar tissue has been carried out using a stereomicroscope and FESEM. At lamellar tissue level, it was possible to observe the arrangement of lamellae in different locations, such as trabeculae and at their intersections. In addition, it has been possible to evaluate the natural tissue porosity and that produced by bone diseases. All this information has been incorporated to the numerical models in order to define the properties of cancellous bone samples. The estimated elastic and strength equations consider an orthotropic behaviour and it is possible to quantify how BMD and porosity affect these properties.
On the other hand, the mechanical behaviour under compression of human trabecular bone samples from femoral heads has been studied. These samples are classified into three study groups: healthy, osteoarthrosic and osteoporotic. The samples have been studied using experimental tests, medical imaging obtained and FE models, enabling to obtain a great deal of information regarding the mechanical behaviour of the bone. The trabecular microarchitecture strongly influences the mechanical response. The most important results obtained are the apparent modulus, the failure stress and the failure strain. It was possible to generate FE models and study the morphometry of the specimens. The FE models have made it possible to estimate the properties at the tissue level. The results revealed that at the tissue level, Young's modulus does not vary appreciably, even if the bone shows bone pathology. A similar yield behaviour is observed for all groups, with differences only in the final failure strain.
The morphometry study has enabled to analyse the morphometric parameters that differentiate between healthy and diseased specimens and even to differentiate between different pathologies. The morphometric parameters have been correlated with the mechanical response to analyse those that have the most significant influence on the mechanical response. The correlations obtained make it possible to estimate the mechanical response of trabecular bone using micro-CT images without the need for experimental tests. The parameters obtained from the mechanical response have also been related. These relationships permit to know the behaviour of each of the samples, which is different depending on the disease they suffer.
Finally, bioinspired samples and minimal surface area triple periodic structures obtained by additive manufacturing have been studied. These samples are made of PLA as the printing material. The samples show a similar orthotropic behaviour to the trabecular samples. These simulants can be used for pre-studies when bone samples are not available. The treatment of large bone fractures requires unconventional techniques for bone fixation. Bone scaffolds with triple periodicity that result in equal orthotropic properties in all three orthogonal directions are often used. These systems must have bone-like stiffness in the vicinity of the defect to avoid implant loosening. To this end, a methodology has been proposed to design patient-specific bone scaffolds that allow the orthotropic mechanical properties in each direction to be calibrated according to a specific bone. / The author and the supervisors of this PhD thesis acknowledge the Ministerio de Ciencia e Innovación y Universidades and the European Regional Development Fund (FEDER) for the financial support received through the projects PID2020-118920RB-I00 and PID2020-118480RB-C21 and C22 funded by MCIN/AEI/10.13039/501100011033, and the Generalitat Valenciana for Plan FDEGENT 2018 and Programa PROMETEO/2021/046. / Megías Díaz, R. (2024). Analysis of osteoporosis effect on the mechanical behaviour and morphometry of human cancellous bone [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/206355
|
125 |
Design of High Mn Fe-Mn-Al-C Low Density Steels for Additive ManufacturingSánchez Poncela, Manuel 13 June 2024 (has links)
[ES] La fabricación aditiva, de sus siglas en inglés AM (Additive Manufacturing) es un proceso que construye objetos sólidos tridimensionales mediante la superposicióon de materiales basados en un modelo de diseño asistido por ordenador. La AM está llamada a convertirse en la próxima revolución industrial, transformando el panorama del desarrollo y la producción. La AM ofrece numerosas ventajas, como posibilidades de diseño complejas y flexibles, la eliminación de procesos intermedios como el mecanizado, la independencia de los costes de producción del tamaño de los lotes, la reducción de los residuos de material, las estructuras ligeras, las reparaciones personalizadas de las máquinas y la capacidad de desarrollar nuevos materiales, entre otras ventajas. En las tecnologías de fabricación aditiva que emplean un rayo láser como fuente de energía, la materia prima inicial (en forma de polvo o cable) es fundida por la fuente de calor láser de forma controlada, capa a capa, hasta crear un componente con dimensiones finales o casi finales. Estas tecnologías implican someter el material impreso a un proceso térmico único, en el que el material se funde en un área muy específica y luego se enfría rápidamente a velocidades extremadamente altas de hasta 10^6 K/s. Por lo tanto, las microestructuras que surgen de los procesos de fabricación en AM difieren significativamente de las que se consiguen en los procesos tradicionales. Además, los materiales que se emplean principalmente en la AM no se han diseñado explícitamente para estas tecnologías. Las características específicas de los procesos de AM pueden utilizarse para lograr microestructuras y propiedades distintas en aceros que han sido adaptados para aprovechar las rápidas velocidades de enfriamiento y la historia térmica del proceso, entre otros factores.
Por el momento, el número de calidades de acero comerciales disponibles en el mercado de la AM es limitado. Diversas industrias demandan nuevos grados de acero con menor densidad para disminuir el peso sin comprometer las propiedades mecánicas. Los aceros con alto contenido en manganeso se consideran materiales muy prometedores para aplicaciones estructurales debido a su excepcional combinación de resistencia y ductilidad, con una baja densidad. Sin embargo, a pesar de sus excepcionales propiedades, los aceros con alto contenido en manganeso se enfrentan a diversas limitaciones o retos durante las técnicas de procesado convencionales. Afortunadamente, la solidificación rápida puede resolver estos problemas. En este sentido, las tecnologías de AM basadas en láser proporcionan velocidades de enfriamiento rápidas, así como flexibilidad en términos de diseño geométrico. Los nuevos retos de estas tecnologías implicarán la microsegregación y el agrietamiento en caliente o hot cracking en inglés, que se producen durante la solidificación.
Esta tesis está dedicada a explotar el método CALPHAD para realizar cálculos termodinámicos con el fin de diseñar varios aceros con alto contenido en manganeso que puedan prevenir eficazmente los problemas de solidificación rápida en AM. Las composiciones de acero diseñadas se produjeron en forma de polvo para AM mediante atomización con gas. Se analizaron los polvos para determinar su microestructura en relación con la química y la velocidad de enfriamiento. Ajustando adecuadamente los parámetros de impresión, estos polvos de acero con alto contenido en manganeso se imprimieron con éxito en AM, dando lugar a densidades relativas superiores al 99.9%. Se analizó la microestructura de estas muestras totalmente densas y se comparó con sus respectivos polvos, con el fin de identificar cualquier diferencia resultante de las variaciones en la velocidad de enfriamiento y los ciclos térmicos. Por último, tras definir el mejor conjunto de condiciones de impresión para cada composición de polvo, se produjeron varias muestras para evaluar las propiedades mecánicas. / [CA] La fabricació additiva, de les seues sigles en anglés AM (Additive Manufacturing) és un procés que construïx objectes sòlids tridimensionals mitjançant la superposició de materials basats en un model de disseny assistit per ordinador. L'AM està cridada a convertir-se en la pròxima revolució industrial, transformant el panorama del desenvolupament i la producció. L'AM oferix nombrosos avantatges, com a possibilitats de disseny complexes i flexibles, l'eliminació de processos intermedis com el mecanitzat, la independència dels costos de producció de la grandària dels lots, la reducció dels residus de material, les estructures lleugeres, les reparacions personalitzades de les màquines i la capacitat de desenvolupar nous materials, entre altres avantatges. En les tecnologies de fabricació additiva que empren un raig làser com a font d'energia, la matèria primera inicial (en forma de pols o filferro) és fosa per la font de calor làser de manera controlada, capa a capa, fins a crear un component amb dimensions finals o quasi finals. Estes tecnologies impliquen sotmetre el material imprés a un procés tèrmic únic, en el qual el material es funde en una àrea molt específica i després es refreda ràpidament a velocitats extremadament altes de fins a 10^6 K/s. Per tant, les microestructures que sorgixen dels processos de fabricació en AM diferixen significativament de les que s'aconseguixen en els processos tradicionals. A més, els materials que s'empren principalment en l'AM no s'han dissenyat explícitament per a estes tecnologies. Les característiques específiques dels processos d'AM poden utilitzar-se per a aconseguir microestructures i propietats diferents en acers que han sigut adaptats per a aprofitar les ràpides velocitats de refredament i la història tèrmica del procés, entre altres factors.
De moment, el nombre de qualitats d'acer comercials disponibles en el mercat de l'AM és limitat. Diverses indústries demanden nous graus d'acer amb menor densitat per a disminuir el pes sense comprometre les propietats mecàniques. Els acers amb alt contingut en manganés es consideren materials molt prometedors per a aplicacions estructurals a causa de la seua excepcional combinació de resistència i ductilitat, amb una baixa densitat. No obstant això, malgrat les seues excepcionals propietats, els acers amb alt contingut en manganés s'enfronten a diverses limitacions o reptes durant les tècniques de processament convencionals. Afortunadament, la solidificació ràpida pot resoldre estos problemes. En este sentit, les tecnologies d'AM basades en làser proporcionen velocitats de refredament ràpides, així com flexibilitat en termes de disseny geomètric. Els nous reptes d'estes tecnologies implicaran la microsegregació i l'esquerdament en calent, o hot cracking en anglés, que es produïxen durant la solidificació.
Esta tesi està dedicada a explotar el mètode CALPHAD per a realitzar càlculs termodinàmics amb la finalitat de dissenyar diversos acers amb alt contingut en manganés que puguen previndre eficaçment els problemes de solidificació ràpida en AM. Les composicions d'acer dissenyades es van produir en forma de pols per a AM mitjançant atomització amb gas. Es van analitzar les pólvores per a determinar la seua microestructura en relació amb la química i la velocitat de refredament. Ajustant adequadament els paràmetres d'impressió, estes pólvores d'acer amb alt contingut en manganés es van imprimir amb èxit en AM, donant lloc a densitats relatives superiors al 99.9%. Es va analitzar la microestructura d'estes mostres totalment denses i es va comparar amb les seues respectives pólvores, amb la finalitat d'identificar qualsevol diferència resultant de les variacions en la velocitat de refredament i els cicles tèrmics. Finalment, desprès de definir el millor conjunt de condicions d'impressió per a cada composició de pols, es van produir diverses mostres per a avaluar les propietats mecàniques. / [EN] Additive manufacturing (AM) is a process that builds three-dimensional solid objects by layering materials based on a computer-aided design model. AM is set to become the next industrial revolution, transforming the landscape of development and production. AM provides numerous benefits, including complex and flexible design possibilities, the elimination of intermediate processes like machining, production cost independence from batch size, reduced material waste, lightweight structures, customized machine repairs, and the ability to develop new materials, among other advantages. In additive manufacturing technologies that employ a laser beam as an energy source, the initial raw material (in the form of powder or wire) is melted by the laser heat source in a controlled manner, layer by layer, until a component with final or nearly final dimensions is created. These technologies involve subjecting the printed material to a unique thermal process, where the material is melted in a very specific area and then rapidly cooled at extremely high rates of up to 10^6 K/s. Hence, the microstructures that arise from the manufacturing processes in AM differ significantly from those achieved in traditional processes. Moreover, the materials predominantly employed in AM have not been explicitly designed for these technologies. The specific characteristics of AM processes can be utilized to achieve distinct microstructures and properties in steels that have been tailored to take advantage of the rapid cooling rates and thermal history of the process, among other factors.
For the moment, the number of commercial steel grades available in the AM market is limited. Various industries are demanding new steel grades with lower density to decrease weight without compromising mechanical properties. High manganese steels are regarded as highly promising materials for structural applications due to their exceptional combination of strength and ductility, with low density. Nevertheless, despite the exceptional properties of high manganese steels, they encounter various limitations or challenges during conventional processing techniques. Fortunately, rapid solidification may solve these issues. In this sense, laser-based AM technologies provide rapid cooling rates, as well as flexibility in terms of geometric design. The new challenges of these technologies will involve micro-segregation and hot cracking occurring during solidification.
This thesis is dedicated to exploiting the CALPHAD method to perform thermodynamic calculations in order to design various high manganese steels that can effectively prevent fast solidification issues in AM. The steel compositions designed were produced in the form of powder for AM using gas atomization. Powders were analyzed to determine their microstructure in relation to the chemistry and cooling rate. By adjusting properly, the printing parameters, these high manganese steel powders were successfully printed in AM, resulting in relative densities exceeding 99.9%. The microstructure of these fully dense samples was analyzed and compared to their respective powders, in order to identify any difference resulting from variations in cooling rate and thermal cycling. Lastly, after defining the best set of printing conditions for each powder composition, various samples were produced to evaluate the mechanical properties, to determine the correlation between the composition, microstructure and properties of these steels. In addition, lattice structures that are close to final part geometries were constructed to quantify the energy absorbed during compression by one of these high manganese steels. The results were then compared to those of 316L, revealing that the high manganese steel absorbs roughly twice as much the specific energy in compression. This finding demonstrates the potential of these novel AM steels for use in industrial applications. / Sánchez Poncela, M. (2024). Design of High Mn Fe-Mn-Al-C Low Density Steels for Additive Manufacturing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/205174
|
Page generated in 0.051 seconds