Spelling suggestions: "subject:"fabric""
411 |
Numerical Constitutive Models of Woven and Braided Textile Structural CompositesChretien, Nicolas 29 April 2002 (has links)
Equivalent, three-dimensional elastic moduli are determined from unit cell models of balanced plain weave, 2D braid, 2D triaxial braid and 4x4 twill textile composite materials consisting of interlaced or intertwined yarns. The yarn paths are modeled with undulation portions, in which one yarn passes over and under one or more yarns, and with straight portions. It is assumed that the centerline of a yarn in the undulation portions is described by the sine function, and that the cross-sectional area of a yarn and the thickness of a yarn, normal to the centerline, are uniform along the centerline.
For the balanced plain weave architecture, equations for the fiber volume fraction and the cross-sectional shape of the yarn are derived for large crimp angles. It is shown that the maximum crimp angle is limited to forty-five degrees, and that limits on the ratio of the length of the undulation portion of the path to the width of the unit cell impose constraints on the fiber volume fraction and yarn packing density. For small crimp angles, approximations to the volume fraction and yarn shape equations are obtained. This assumption is used in the derivation of the geometry of the remaining architectures, and subsequent equations are obtained for the corresponding geometric parameters.
For each architecture, the yarns are assumed to be transversely isotropic and a stress averaging technique based on an iso-strain assumption is used to determine the effective moduli of the unit cells. Comparisons of the effective moduli are made to other unit cell models in the literature.
The micromechanical models are implemented in Fortran programs and user material subroutines for ABAQUS, called UMAT, are created out of these programs. For a balanced plain weave fabric under the small crimp angle approximation, a progressive failure model is developed to predict failure within each yarn and to degrade the material properties of the representative unit cell. Material failure is predicted by discretizing the yarns into slices and applying Tsai-Wu quadratic criterion to the on-axis strains in each slice. A stiffness and strength reduction scheme is then used to account for the change in yarn compliance.
At the present time, the UMAT has only been tested as a stand-alone program with Visual Fortran 6.0, and would require further development to be used within ABAQUS on sample structural problems. / Master of Science
|
412 |
Establishment of a Resource-efficient Spray Dyeing Process for Polyester Fabrics : A study on the key process steps of the hydraulic spray atomising system—pre-treatment, dyeing, predrying, and fixationMae Amandoron, Kristine January 2024 (has links)
The production of polyethylene terephthalate (PET) textiles, commonly known as polyester, is an energy and water-intensive process, particularly during the dyeing and finishing stages, leading to significant carbon emissions and wastewater filled with toxic chemicals. Conventional dyeing processes consume large volumes of water and energy, making them environmentally harmful. Innovative methods like hydraulic spray atomizer offer a more sustainable alternative by reducing water and chemical usage, thus minimizing waste and environmental impact. This study explores the hydraulic spray dyeing process parameters, including pre-treatment, dyeing, pre-drying, and fixation steps for three different polyester fabrics. The objective is to achieve resource-efficient dyeing with comparable results to traditional methods, and to compare effectiveness of a combined pre-treatment and dyeing approach with a two-step spray application of pre-treatment and dyeing. Pre-treatment of the polyester fabrics with chemical hydrophilizing agents by spray application showed to improve the hydrophilic character and wetting capacity of three polyester fabrics—P75, P600, and Kibo based on reduced water contact angle measurements and increased vertical wicking rates. A pre-treatment also showed to enhance the K/S values of the three different polyester fabrics. The addition of a pre-drying step showed some indication of reducing disperse dye migration, and enhanced color strength of the Kibo fabrics. Spray dyed samples maintained dyeing quality comparable to padded samples. One-step spray processes demonstrated comparable or improved color properties and durability to fastness to washing and abrasion in comparison to two-step processes. The results demonstrate that the hydraulic spray atomizing system is viable for both dyeing and pre-treatment of polyester fabrics. Furthermore, this lays the groundwork for innovation in wet textile processes of polyester fabrics using this resource-efficient alternative, aiming towards sustainable textile production and dyeing.
|
413 |
Biaxial Response of Individual Bonds in Thermomechanically Bonded Nonwoven FabricsWijeratne, Roshelle Sumudu 29 June 2017 (has links)
Thermomechanically bonded spunbond nonwoven fabrics contain discrete bonds that are formed by melted and fused fibers. Through equi-biaxial tensile testing and simultaneous image capture, the mechanical response of individual bonds was studied through loading in the preferential fiber direction, the machine direction, and in the direction that is perpendicular, the cross direction, of the fabric web. Independent biaxial force and displacement data were collected and analyzed, and the maximum force and stiffness of the bonds in the machine and cross directions were found to be statistically different. After scaling the maximum force and stiffness by a relative basis weight parameter, a fiber orientation parameter, and the width of the bond itself, the peak force and stiffness in the machine and cross directions were found to no longer be statistically different. This indicates that basis weight, fiber orientation, and bond size dictate the biaxial mechanical behavior of the bonds. Furthermore, significant fiber debonding was observed in all the bonds tested, effectively suggesting bond disintegration into the individual component fibers during testing. Digital image correlation, using the captured images, was utilized to calculate local and average Eulerian strains of the bond during the initial stages of the test. The strain experienced by the bonds in the machine direction was always positive and increasing as the biaxial load increased. The strain in the cross direction, however, experienced increasing and decreasing strain. Local strain maps revealed the highly inhomogeneous strain response of the bonds under biaxial loading. / Master of Science / For numerous industrial and consumer applications, such as the medical, automotive, packaging, and consumer goods, nonwoven fabrics are often thermomechanically bonded at discrete bond locations in patterns appropriate for the intended use. To produce the nonwoven, fibers are extruded onto a belt and the mat of fibers is passed through a calendar roll to form the thermomechanical bonds. As the fibers move on the belt, there is a preferential fiber direction parallel to the belt. Mechanical biaxial tensile tests were performed on nonwoven sheets in order to gain insight into the response parallel and perpendicular to the preferential fiber direction. Force and displacement data were collected and the maximum force and stiffness response parallel to the preferential fiber direction were found to be significantly higher than perpendicular to the preferential fiber direction. Strain measurements were also performed to examine the local strain of the bonds. Knowledge of the biaxial tensile behavior of bonds in nonwovens allows manufacturers to make informed decisions about the ultimate final application of the nonwoven.
|
414 |
Strength of hydroentangled fabrics manufactured from photo-irradiated poly para-phenylene terephthalamide (PPTA) fibresWright, T.M., Carr, C.M., Grant, Colin A., Lilladhar, V., Russell, S.J. 2014 August 1930 (has links)
No / Photo-irradiation of poly para-phenylene terephthalamide (PPTA) fibre is normally associated with
deterioration of physical properties. Nonwoven fabrics produced from 100% photo-irradiated PPTA fibres
might therefore be expected to yield fabrics with poorer mechanical properties compared to those
produced from non-irradiated fibres. To test this hypothesis, the bursting strength of hydroentangled
fabrics manufactured from photo-irradiated PPTA fibres was explored. Prior to fabric manufacture, virgin
PPTA staple fibres were photo-irradiated under controlled lighting conditions (xenon short arc lamp with
a luminous flux of 13,000 lm) for 0, 5, 10, 20, 40, 60 and 100 h. The photo-irradiated fibres were then
hydroentangled to produce nonwoven fabrics. Photo-irradiation exposure of PPTA fibre up to 30 MJ m 2
was not found to be detrimental to fabric bursting strength and at irradiation energies of 5e10 MJ m 2 a
small, but statistically significant increase in fabric bursting strength was observed compared to fabrics
manufactured from non-irradiated fibre. This may be linked to a change in the surface and skin properties
of the PPTA photo-irradiated fibres identified by atomic force microscopy (AFM) following photoirradiation.
|
415 |
Liquid transport mechanisms in cotton-polypropylene laminated nonwoven fabrics influencing pesticide penetrationSarin, Siddartha 10 January 2009 (has links)
The purpose of this research was to investigate and compare the liquid transport properties of cotton nonwoven laminates of varying cotton/polypropylene fiber content (80:20, 60:40, 40:60, by weight) with a 100% polypropylene fabric and a 100% polyethylene fabric. Capillary, pressure and impact penetration mechanisms were investigated as well as other measures of fabric wetting, wicking, and liquid retention. A water/surfactant solution of surface tension close to that of the pesticide solution was used in some tests to determine whether it could be used to simulate liquid transport characteristics of the pesticide solution. The effect of volume on capillary and pressure penetration was also evaluated.
Results indicated that the 100% polyethylene fabric offered the greatest resistance to all three penetration methods. The 80:20 cotton:polypropylene fabric, exhibited significantly greater amounts of penetration than the other fabrics in capillary penetration. There was no significant difference in the penetration values of the 100% polypropylene and the cotton laminates in the pressure penetration of the water/surfactant. There were no significant differences in the impact penetration values of the cotton laminates, but the 100% polypropylene exhibited significantly lower amounts of impact penetration than the cotton laminates. Pressure penetration was found to result in the most severe form of penetration.
A high degree of correlation was obtained between penetration by the pesticide and penetration by the water/surfactant solution, whose surface tension was close to that of the pesticide solution. A higher retention of the pesticide resulted in lesser amounts of penetration of the pesticide solution. However, in the case of retention of water/surfactant, it was found that even though there were no significant differences in the retention values of the water/surfactant, there were significant differences in the penetration values of the water/surfactant. Surface tension of the solution was found to have an effect on the wetting and wicking responses of the fabrics, which affected the amount of capillary penetration. Increasing volume resulted in an increase in the amount of penetration that took place. / Master of Science
|
416 |
Um estudo sobre arquitetura têxtil no Brasil: o segmento de mercado das estruturas tensionadas feitas com membranas poliéster/PVC / A study about textile architecture in Brazil: the market segment of tensile structures made with polyester/PVC membranes.Assis, Regina Guidon de 13 December 2012 (has links)
Um tipo de composto têxtil, comumente chamado de membrana têxtil, tem sido empregado, nas últimas décadas, como parte de um sistema arquitetônico usado para a cobertura, fechamento e/ou proteção de espaços públicos e privados em vários países do mundo. O termo membrana está relacionado com o fato de o material permanecer tensionado e separar dois ambientes que se interagem. Essa solução arquitetônica é comumente conhecida como arquitetura têxtil, especialmente quando se trata de estruturas tensionadas; o termo é usado por muitos profissionais em todo mundo, apesar de não existir uma unanimidade de opiniões sobre os conceitos envolvidos na definição do termo e o que ele abrange. Na maior parte dos casos, as obras geradas são muito atraentes, práticas e funcionais, com características, formas e tamanhos diversos, dependendo da necessidade a ser atendida. Quando bem projetadas, integram-se perfeitamente ao ambiente por terem formas orgânicas e passarem uma imagem de leveza, fluidez e modernidade. São dois os tipos de membranas têxteis mais usados: 1) um grupo de membranas cujo tecido estruturante é um tecido de poliéster recoberto em ambos os lados por uma camada de cloreto de polivinila (PVC), e 2) um grupo de membranas feitas com tecidos de vidro recobertos com politetraflúoretileno (PTFE). O foco principal deste trabalho são as membranas de poliéster/PVC usadas para estruturas tensionadas. Os tecidos usados nessa gama estão enquadrados na categoria denominada tecidos técnicos, e são formados por fios compostos por filamentos de poliéster de alta tenacidade de diferentes tipos, gerando vários artigos com características técnicas distintas e, consequentemente, membranas com diversas especificações e comportamentos diferentes na aplicação final.Este estudo traz uma visão geral sobre o assunto no mundo e um panorama mais detalhado para o Brasil, abordando definições, termos usados, materiais, fornecedores, especificações, tipos de produtos e acabamentos, normas, reciclagem e meio ambiente. A beleza e modernidade são apontadas como as principais qualidades desse tipo de cobertura. As expectativas são de crescimento dessa aplicação para os próximos anos. Porém a falta de conhecimento e a complexidade técnica desse tipo de solução é um problema a ser solucionado para que melhores resultados sejam atingidos e ela possa realmente ser considerada uma solução viável e adequada para o país. / The type of textile compound, commonly called textile membrane, has been employed in recent decades, as part of an architectural system used for covering, closing and/or protection of publics and private spaces in many countries around the world. The term membrane is related to the fact that the material remains tensioned and separating two interacting environments. This architectural solution is commonly known as \' textile architecture \', especially when tensile structures are involved; this term is used by many professionals worldwide, although it do not exist a unanimity of opinions regarding the concepts involved in the definition of the term and what it encompasses. In most cases, the structures generated are very attractive, practical and functional, with different characteristics, different shapes and sizes, depending on the requirements to be met. When well designed, they will be seamlessly integrated with the environment by having organic forms, giving a feeling of lightness, fluidity and modernity. The two types of textile membranes commonly used are: 1) a group whose structuring material of the membrane is a polyester fabric coated, on both sides, with a layer of polyvinyl chloride (PVC), and 2) a group of membranes made with glass filament fabrics coated with polytetrafluoretilene (PTFE). The focus of this work is the polyester/PVC membranes used for tensile structures. The fabric used in this range is framed within the category named \'technical fabrics\', and are composed by different kinds of high tenacity yarns of polyester filaments, generating several articles with different technical characteristics and consequently, membranes with different specifications and different behaviors in the final application. The study provides an overview of the subject in the world and a panorama slightly more detailed for Brazil, covering definitions, terms, used materials, suppliers, specifications, product types and finishes, recycling and environment issues. The \' beauty \' and \' modernity \' are cited as the main qualities of this type of covering. There are expectations of growing of this application for coming years. But the lack of knowledge and the technical complexity of this kind of solution is a problem to be solved, so that best results can are achieved and it can really be considered a viable and appropriate solution for the country.
|
417 |
台灣成品布國際競爭策略研究 / Studies on the International Competitive Strategy of Taiwan Apparel Fabrics蘇家煦, Chia-She, Su Unknown Date (has links)
本文以企業策略家Micnael Porter 1990年著作國家競爭優勢中的國家競
爭力之鑽石四條件互動為基礎,探討我國成品布產業現階段的作業品質及
下一階段之競爭策略。其中並以Werner International之分析方式,將全
球成品布業者分為四群,就鑽石四條件間互動方式的差異,確認我國與貼
身對手國的位階及與先進國的差異。本文實地訪談的地理範圍包括日本、
香港、大陸深圳、馬來西亞,實際訪談的國內外企業組織包括德國、日本
、香港、台灣約共60家,業務範圍包括化纖業、紡紗織布業、染整業、成
衣業、進口布料業、成品布外銷業者及協力廠商,希望能以「全球產業」
、「國際分工」的理性宏觀觀點來觀察。研究發現,我國化纖類成品布因
人纖技術的突破而具優勢,此優勢形成原因在於1960年代具競爭力的生產
要素中的高等因子;1990年代以後我國成品布業者,若仍繼續著非相關事
業多角化,在人材培育上無具體有力與全面的投資,我國的成品布將無法
在研發團隊的建立、織物設計能力與網路形成之三大工作上突破。本研究
中亦發現,我國成品布全體工作者的觀念與技術能力均有待全面的提升,
除非與先進國家各相應的組織進行密切的策略聯盟,僅靠自身的努力將不
足以提高四條件本身與互動的品質,亦即將無法超越國際分工的命定角色
,而我國成品布業將只能成為香港與東南亞成衣業之供應源而已。自民
國78年迄今,我國成品布業者,尚只有零星而局部的在公司策略與組織的
調整上努力;至於人材培育與相關產業方面,看不出來有進步的趨向,就
短期而言,我國仍只能在生產基地移轉、彈性生產及短交期、短碼數接單
上獲利,至於新市場(通路)開拓與新產品開發(布料設計與行銷資訊之結
合)方面,仍有待我方長期的努力。
|
418 |
Um estudo sobre arquitetura têxtil no Brasil: o segmento de mercado das estruturas tensionadas feitas com membranas poliéster/PVC / A study about textile architecture in Brazil: the market segment of tensile structures made with polyester/PVC membranes.Regina Guidon de Assis 13 December 2012 (has links)
Um tipo de composto têxtil, comumente chamado de membrana têxtil, tem sido empregado, nas últimas décadas, como parte de um sistema arquitetônico usado para a cobertura, fechamento e/ou proteção de espaços públicos e privados em vários países do mundo. O termo membrana está relacionado com o fato de o material permanecer tensionado e separar dois ambientes que se interagem. Essa solução arquitetônica é comumente conhecida como arquitetura têxtil, especialmente quando se trata de estruturas tensionadas; o termo é usado por muitos profissionais em todo mundo, apesar de não existir uma unanimidade de opiniões sobre os conceitos envolvidos na definição do termo e o que ele abrange. Na maior parte dos casos, as obras geradas são muito atraentes, práticas e funcionais, com características, formas e tamanhos diversos, dependendo da necessidade a ser atendida. Quando bem projetadas, integram-se perfeitamente ao ambiente por terem formas orgânicas e passarem uma imagem de leveza, fluidez e modernidade. São dois os tipos de membranas têxteis mais usados: 1) um grupo de membranas cujo tecido estruturante é um tecido de poliéster recoberto em ambos os lados por uma camada de cloreto de polivinila (PVC), e 2) um grupo de membranas feitas com tecidos de vidro recobertos com politetraflúoretileno (PTFE). O foco principal deste trabalho são as membranas de poliéster/PVC usadas para estruturas tensionadas. Os tecidos usados nessa gama estão enquadrados na categoria denominada tecidos técnicos, e são formados por fios compostos por filamentos de poliéster de alta tenacidade de diferentes tipos, gerando vários artigos com características técnicas distintas e, consequentemente, membranas com diversas especificações e comportamentos diferentes na aplicação final.Este estudo traz uma visão geral sobre o assunto no mundo e um panorama mais detalhado para o Brasil, abordando definições, termos usados, materiais, fornecedores, especificações, tipos de produtos e acabamentos, normas, reciclagem e meio ambiente. A beleza e modernidade são apontadas como as principais qualidades desse tipo de cobertura. As expectativas são de crescimento dessa aplicação para os próximos anos. Porém a falta de conhecimento e a complexidade técnica desse tipo de solução é um problema a ser solucionado para que melhores resultados sejam atingidos e ela possa realmente ser considerada uma solução viável e adequada para o país. / The type of textile compound, commonly called textile membrane, has been employed in recent decades, as part of an architectural system used for covering, closing and/or protection of publics and private spaces in many countries around the world. The term membrane is related to the fact that the material remains tensioned and separating two interacting environments. This architectural solution is commonly known as \' textile architecture \', especially when tensile structures are involved; this term is used by many professionals worldwide, although it do not exist a unanimity of opinions regarding the concepts involved in the definition of the term and what it encompasses. In most cases, the structures generated are very attractive, practical and functional, with different characteristics, different shapes and sizes, depending on the requirements to be met. When well designed, they will be seamlessly integrated with the environment by having organic forms, giving a feeling of lightness, fluidity and modernity. The two types of textile membranes commonly used are: 1) a group whose structuring material of the membrane is a polyester fabric coated, on both sides, with a layer of polyvinyl chloride (PVC), and 2) a group of membranes made with glass filament fabrics coated with polytetrafluoretilene (PTFE). The focus of this work is the polyester/PVC membranes used for tensile structures. The fabric used in this range is framed within the category named \'technical fabrics\', and are composed by different kinds of high tenacity yarns of polyester filaments, generating several articles with different technical characteristics and consequently, membranes with different specifications and different behaviors in the final application. The study provides an overview of the subject in the world and a panorama slightly more detailed for Brazil, covering definitions, terms, used materials, suppliers, specifications, product types and finishes, recycling and environment issues. The \' beauty \' and \' modernity \' are cited as the main qualities of this type of covering. There are expectations of growing of this application for coming years. But the lack of knowledge and the technical complexity of this kind of solution is a problem to be solved, so that best results can are achieved and it can really be considered a viable and appropriate solution for the country.
|
419 |
Process development for the manufacturing of flat knitted innovative 3D spacer fabrics for high performance composite applicationsAbounaim, Md. 01 February 2011 (has links)
Innovative 3D spacer fabrics made from individual planes and connecting layers present great potential as complexly shaped textile preforms in lightweight composite applications. As one of the most flexible textile manufacturing methods, flat knitting enables the production of intricately shaped textile structures. The major advantages coupled with flat knitting techniques include the ability to produce multi-layer reinforcements, a diminishing waste, reducing production time and near-net shaping. This research includes the further development of flat knitting technology and the manufacturing processes of innovative, customized 3D spacer fabrics for high performance composite applications. Novel 3D spacer fabrics have been developed in different geometries using glass-polypropylene commingled hybrid yarns for complex shaped thermoplastic composite components. Reinforcement yarns have been integrated into spacer fabric structures with up to 4 reinforcement layers to improve mechanical performance. Furthermore, the successful addition of “sensor networks” created by integrating functional yarns into the 3D spacer fabrics could be used for structural health monitoring. Innovative integration concepts, which accommodate different positioning of the reinforcement yarns into the knit structures, can be used to adjust the mechanical properties of the finished knit composites. Moreover, the tensile properties have been accurately predicted based on the mathematical models formulated. The developed flat knitted 3D spacer fabrics are very promising for applications in lightweight composites, mechanical engineering, protective textiles, civil engineering and architectural designs. / Innovative 3D-Spacer Fabrics bestehend aus individuellen Deckflächen und Verbindungsstegen bieten ein großes Potential als komplex geformte textile Halbzeuge für Leichtbauverbundwerkstoffanwendungen. Mit Hilfe des Flachstrickens, welches einer der flexibelsten textilen Herstellungsprozesse ist, lassen sich komplex geformte textile Strukturen herstellen. Belastungsgerechte Verstärkungen, Abfallreduzierung, endkonturnahe Fertigung sind nur einige der großen Vorteile der modernen Flachstricktechnik. Die Forschungsarbeit beinhaltet die Entwicklung der Flachstricktechnologie und des Herstellungsprozesses für innovative 3D-Spacer Fabrics für Hochleistungsverbundwerkstoffe. Neuartige 3D-Spacer Fabrics wurden in unterschiedlichen Geometrien entwickelt, in dem Glas-/ Polypropylen Commingling-Hybridgarn für komplex geformte thermoplastische Verbundwerkstoffkomponenten eingesetzt wird. Verstärkungsfäden wurden für hochmechanische Belastungen in die Spacer-Fabric-Strukturen in bis zu 4 Verstärkungschichten integriert. Die erfolgreiche Umsetzung und Entwicklung von Sensornetzwerken durch die Integration von funktionalen Fäden in die 3D-Spacer Fabrics kann für die strukturelle Zustandsüberwachung genutzt werden. Die innovativen Integrationskonzepte erlauben die differenzierte Orientierung von Verstärkungsfäden in den Gestrickstrukturen, wodurch eine starke Beeinflussung der mechanischen Eigenschaften der Gestrickverbundwerkstoffe herbeigeführt wird. Darüber hinaus wurden die Zugeigenschaften basierend auf den entwickelten mathematischen Modellen vorhergesagt. Die entwickelten flachgestrickten 3D-Spacer Fabrics sind sehr vielversprechend beispielweise für die Anwendung in Leichtbauverbundwerkstoffen, im Maschinenbau, in Schutztextilien, im Bauingenieurwesen und Architekturdesign.
|
420 |
On-Loom Fabric Defect Inspection Using Contact Image Sensors and Activation Layer Embedded Convolutional Neural NetworkOuyang, Wenbin 12 1900 (has links)
Malfunctions on loom machines are the main causes of faulty fabric production. An on-loom fabric inspection system is a real-time monitoring device that enables immediate defect detection for human intervention. This dissertation presented a solution for the on-loom fabric defect inspection, including the new hardware design—the configurable contact image sensor (CIS) module—for on-loom fabric scanning and the defect detection algorithms. The main contributions of this work include (1) creating a configurable CIS module adaptable to a loom width, which brings CIS unique features, such as sub-millimeter resolution, compact size, short working distance and low cost, to the fabric defect inspection system, (2) designing a two-level hardware architecture that can be efficiently deployed in a weaving factory with hundreds of looms, (3) developing a two-level inspecting scheme, with which the initial defect screening is performed on the Raspberry Pi and the intensive defect verification is processed on the cloud server, (4) introducing the novel pairwise-potential activation layer to a convolutional neural network that leads to high accuracies of defect segmentation on fabrics with fine and imbalanced structures, (5) achieving a real-time defect detection that allows a possible defect to be examined multiple times, and (6) implementing a new color segmentation technique suitable for processing multi-color fabric defects.
The novel CIS-based on-loom scanning system offered real-time and high-resolution fabric images, which was able to deliver the information of single thread on a fabric. The algorithm evaluation on the fabric defect datasets showed a non-miss-detection rate on defect-free fabrics. The average precision of defect existed images reached above 90% at the pixel level. The detected defect pixels' integrity—the recall scored around 70%. Possible defect regions overestimated on ground truth images and the morphologies of fine defects similar to regular fabric pattern were the two major reasons that caused the imperfection in defect pixel locating. The experiments showed the defect areas on multi-color fabrics could be precisely located under the proposed color segmentation algorithm.
|
Page generated in 0.0524 seconds