• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation styles and localisation of thrust faults in the external French Alps

Welbon, A. I. January 1988 (has links)
No description available.
2

Salt flow around minibasins: Insight from the interaction of salt walls and faults surrounding the Lyons minibasin, Gulf of Mexico

January 2020 (has links)
archives@tulane.edu / Minibasins, i.e., small basins that can be up to 8 km in depth and a few tens of km in diameter, often form in regional salt basins and on salt-rich passive margins. As salt walls grow through time, brittle strain localizes in zones directly above the salt walls leading to complex fault arrays surrounding the minibasins. These fault arrays provide insight into the relative movement of minibasins and the local deformation field, which influences the hydrocarbon exploration around them. Using high-resolution bathymetry and 2D reflection seismic data, we have examined fault systems and their interaction with salt walls around the Lyons minibasin in the Gulf of Mexico, offshore USA. This analysis shows that the geometry of salt walls varies and controls the development of faults form in the overlying sedimentary layer. The wide plateau-like salt wall creates a mechanical constraint that restricts the development of faults vertically and laterally. The narrow ridge of the salt wall has less mechanical restriction and allows faults to grow in displacement. Deformation is more localized above the narrow ridge of salt wall. This study suggests that the intricate fault patterns around minibasins result from multi-phase deformation caused by the variation of salt flow within the salt walls. Initially, minibasin subsidence expels salt upward and outward. After the minibasins is welded, the regional slope enhances the lateral flow and allows salt to flow around welded minibasins. During this stage, the lateral flow of salt is constrained by the salt wall orientation. Moreover, this study demonstrates a new approach that provides an additional perspective to understand the evolution of minibasins and their interaction, which is a limitation of 2D modeling studies. / 1 / Thi Quan H. Pham
3

Identification of fault and top seal effectiveness through an integration of hydrodynamic and capillary analysis techniques

Underschultz, James Ross January 2009 (has links)
Fault and top seal effectiveness has proved to be a significant risk in exploration success, and creates a large uncertainty in predicting reservoir performance. This is particularly true in the Australian context, but equally applies to exploration provinces worldwide. Seals can be broadly classified into fault, intraformational, and top seal. For geological time-scale processes, intraformational and top seals are typically characterised by their membrane seal capacity and fracture threshold pressure. Fault seals are typically characterised by fault geometry, juxtaposition, membrane seal capacity, and reactivation potential. At the production time scale, subtle variations in the permeability distribution within a reservoir can lead to compartmentalization. These are typically characterised by dynamic reservoir models which assume hydrostatic conditions prior to commencement of production. There are few references in the seals literature concerning the integration of hydrodynamic techniques with the various aspects of seal evaluation. The research for this PhD thesis by published papers includes: Methodology for characterising formation water flow systems in faulted strata at exploration and production time scales; a new theory of hydrodynamics and membrane (capillary) seal capacity; and case study evaluations demonstrating integrated multidisciplinary techniques for the evaluation of seal capacity (fault, intraformational and top seal) that demonstrate the new theory in practice. By incorporating hydrodynamic processes in the evaluation of total seal capacity, the evidence shows that existing shale gouge ratio – across fault pressure difference (SGR-AFPD) calibration plots need adjustment resulting in the calibration envelopes shifting to the centre of the plot. / This adjustment sharpens the predictive capacity for membrane seal analysis in the pre-drill scenario. This PhD thesis presents the background and rationale for the thesis topic, presents each published paper to be included as part of the thesis and its contribution to the body of work addressing the thesis topic, and presents related published papers that are not included in the thesis but which support the body of published work on the thesis topic. The result of the thesis is a new theory and approach to characterising membrane seal capacity for the total seal thickness, and has implications for an adjusted SGR-AFPD calibration to be applied in pre-drill evaluations of seal capacity. A large portion of the resources and data required to conduct the research were made available by CSIRO and its associated project sponsors including the CO2CRC.

Page generated in 0.0759 seconds