351 |
Robustez em um sistema de detecção e rastreamento de olhos para implementação de uma interface humano-computador.Silva, André Brasiliano da 21 August 2014 (has links)
Made available in DSpace on 2016-03-15T19:37:51Z (GMT). No. of bitstreams: 1
Andre Brasiliano da Silva.pdf: 4815626 bytes, checksum: e53fa837ff6a7eb3cff0f55f4b3b26ac (MD5)
Previous issue date: 2014-08-21 / Eye tracking is an important issue for Human Computer interaction, mainly for users with hand-eye coordination problems. The work presented here shows a low cost and
robust eye tracking system capable to work with an HD stream. The implementations used in this work over the base system present diferent techniques in all stages, from face detection to iris detection. Local processing is used in most stages in this implementation, delimiting the region of interest (ROI) for face detection, eye detection and iris detection. The system robustness allow the eye tracking system to control the mouse using eye movements allowing disable users to communicate through a communication interface. The hardware required is simple and based in an high definition webcam. The face detection and eye detection processes are based on the Viola Jones technique; iris detection and tracking are based on the Hough Transform. The usage of local processing reduces the computational cost and even working with high definition stream leads to a performance 33% better than the base system. The system presented here was compared with a commercial system and a set of equipment were tested in order to dene the best set up for the eye tracking system and to validate the work presented here. Future work is presented at the end in order to allow the project continuity. / O rastreamento ocular para usuários com problemas motores é um estudo importante na área de Interface Humano-Computador (IHC). Com o objetivo de fornecer um sistema de rastreamento ocular de baixo custo, este trabalho apresenta uma nova abordagem para um sistema robusto e com alto desempenho. Com relação ao trabalho base para esta pesquisa, a implementação proposta contém inovações em todas as etapas do processo envolvendo o rastreamento ocular, desde a detecção da região da face e dos olhos até a detecção da íris. Neste trabalho, foi utilizado o conceito de processamento local, delimitando as regiões de interesse em todas as etapas do processo: detecção da região da face, região dos olhos e região da íris. Este trabalho permite que pessoas possam efetuar ações controlando o mouse através do movimento dos olhos em uma interface de rastreamento ocular, utilizando apenas equipamentos de uso comum, como, por exemplo, uma webcam. O processo de detecção da face e detecção ocular foi feito através da técnica de Viola e Jones. Para a detecção e rastreamento da íris foi utilizada a Transformada de Hough, e utilização de regiões de interesse com o objetivo de limitar a área de processamento da imagem, e consequentemente, o custo computacional, resultando em uma aplicação com um melhor desempenho e robustez em todas as etapas. Obteve-se um ganho de até 33% em relação ao tempo de processamento do sistema, quando comparado com o sistema base, porém, operando com imagens em alta definição. Foi realizada ainda uma comparação com sistemas de rastreamento ocular de uso comercial e diferentes tipos de equipamentos para validar as técnicas estudadas neste trabalho.
|
352 |
Classificação de sinais de eletroencefalograma usando máquinas de vetores suporteChagas, Sandro Luiz das 27 August 2009 (has links)
Made available in DSpace on 2016-03-15T19:38:14Z (GMT). No. of bitstreams: 1
Sandro Luiz das Chagas.pdf: 1694587 bytes, checksum: d10c7a5a95b65289731cab95f9b3478a (MD5)
Previous issue date: 2009-08-27 / Electroencephalogram (EEG) is a clinical method widely used to study brain function and neurological disorders. The EEG is a temporal data series which records the electrical activity of the brain. The EEG monitoring systems create a huge amount of data; with this fact a visual analysis of the EEG is not feasible. Because of this, there is a strong demand for computational methods able to analyze automatically the EEG records and extract useful information to support the diagnostics. Herewith, it is necessary to design a tool to extract the relevant features within the EEG record and to classify the EEG based on these features. Calculation of statistics over wavelet coefficients are being used successfully to extract features from many kinds of temporal data series, including EEG signals. Support Vector Machines (SVM) are machine learning techniques with high generalization ability, and they have been successfully used in classification problems by several researches. This dissertation makes an analysis of the influence of feature vectors based on wavelet coefficients in the classification of EEG signal using different implementations of SVMs. / O eletroencefalograma (EEG) é um exame médico largamente utilizado no estudo da função cerebral e de distúrbios neurológicos. O EEG é uma série temporal que contém os registros de atividade elétrica do cérebro. Um grande volume de dados é gerado pelos sistemas de monitoração de EEG, o que faz com que a análise visual completa destes dados se torne inviável na prática. Com isso, surge uma grande demanda por métodos computacionais capazes de extrair, de forma automática, informação útil para a realização de diagnósticos. Para atender essa demanda, é necessária uma forma de extrair de um sinal de EEG as características relevantes para um diagnóstico e também uma forma de classificar o EEG em função destas características. O cálculo de estatísticas sobre coeficientes wavelet vem sendo empregado com sucesso na extração de características de diversos tipos de séries temporais, inclusive EEG. As máquinas de vetores de suporte (SVM do inglês Support Vector Machines) constituem uma técnica de aprendizado de máquina que possui alta capacidade de generalização e têm sido empregadas com sucesso em problemas de classificação por diversos pesquisadores. Nessa dissertação é feita uma análise do impacto da utilização de vetores de características baseados em coeficientes wavelet na classificação de EEG utilizando diferentes implementações de SVM.
|
353 |
Sistema de visão artificial para identificação do estado nutricional de plantas / Artificial vision system for plant nutricional state identificationAlvaro Manuel Gómez Zúñiga 29 March 2012 (has links)
A avaliação do estado nutricional das plantas de milho usualmente é feita através de análises químicas ou pela diagnose visual das folhas da planta, esta última, sujeita a erros de interpretação já que a ausência de algum nutriente na planta gera um padrão de mudança específico na superfície da folha que depende do nível de ausência do nutriente. As dificuldades que apresentam neste processo e sua importância na agricultura, criam a necessidade de pesquisar sistemas automáticos para a avaliação do estado nutricional de plantas. Desta forma, este mestrado teve como objetivo principal o desenvolvimento de um sistema de visão artificial para verificar a possibilidade de identificação de níveis dos macronutrientes Cálcio, Enxofre, Magnésio, Nitrogênio e Potássio em plantas de milho através da análise da superfície das folhas usando métodos de visão computacional. Este projeto realiza uma revisão bibliográfica do estado da arte dos métodos de extração de características de cor, textura em escala de cinza e textura colorida utilizadas em processamento de imagens. A alta similaridade entre os sintomas produzidos pelas deficiências e a pouca similaridade entre amostras de uma mesma deficiência motivou o desenvolvimento de novos métodos de extração de características que pudessem fornecer dados necessários para uma correta separação entre as classes. Os resultados obtidos demonstraram que o sistema desenvolvido possibilita a predição de deficiências nutricionais em estágios iniciais do crescimento da planta usando unicamente a textura da superfície da folha como fonte de informação / The evaluation of the nutritional status of corn plants is usually done through chemical analysis or by visual diagnosis of the plant leaves. Visual diagnosis is subject to misinterpretation as the lack of some nutrient in the plant generates a specific pattern of change in the leaf surface that depends on the degree on which the nutrient is absent on the plant. The difficulties present in this process and its importance in agriculture creates the necessity to search automated systems for the assessment of nutritional status of plants. Thus, this dissertation had as main objective the development of an artificial vision system to verify the possibility of identifying levels of macronutrients calcium, sulfur, magnesium, potassium and nitrogen in corn plants by analyzing the surface of the leaves using computer vision methods. This project performs a review of the literature of the state of the art methods for feature extraction of color, grayscale and colored texture used in image processing. The high similarity between the symptoms caused by deficiencies and low similarity between samples of the same deficiency motivated the development of new methods for extracting features that could provide the data needed for a correct separation between classes. The results showed that the system enables the prediction of nutritional deficiencies in an initial stage of plant growth using only texture of the leaf surface as a source of information
|
354 |
Redes neurais auto-organizáveis na caracterização de lesões intersticiais de pulmão em radiografia de tórax / Self-organizing neural networks in the characterization of interstitial lung diseases in chest radiographs.Paulo Eduardo Ambrosio 01 June 2007 (has links)
O desenvolvimento tecnológico proporciona uma melhoria na qualidade de vida devido à facilidade, rapidez e flexibilidade no acesso à informação. Na área biomédica, a tecnologia é reconhecidamente uma importante aliada, permitindo o rápido desenvolvimento de métodos e técnicas que auxiliam o profissional na atenção à saúde. Recentes avanços na análise computadorizada de imagens médicas contribuem para o diagnóstico precoce de uma série de doenças. Nesse trabalho é apresentada uma metodologia para o desenvolvimento de um sistema computacional para caracterização de padrões em imagens pulmonares, baseado em técnicas de redes neurais artificiais. No estudo, buscou-se verificar a utilização de redes neurais auto-organizáveis como ferramenta de extração de atributos e redução de dimensionalidade de imagens radiográficas de tórax, objetivando a caracterização de lesões intersticiais de pulmão. Para a redução de dimensionalidade e extração de atributos, implementou-se um algoritmo baseado nos mapas auto-organizáveis (SOM), com algumas variações, obtendo-se uma redução dos cerca de 3 milhões de pixels que compõe uma imagem, para 240 elementos. Para a classificação dos padrões, utilizou-se uma rede Perceptron multi-camadas (MLP), validada com a metodologia leave-one-out. Com uma base contendo 79 exemplos de padrão linear, 37 exemplos de padrão nodular, 30 exemplos de padrão misto, e 72 exemplos de padrão normal, o classificador obteve a média de 89,5% de acerto, sendo 100% de classificação correta para o padrão linear, 67,5% para o padrão nodular, 63,3% para o padrão misto, e 100% para o padrão normal. Os resultados obtidos comprovam a validade da metodologia. / The technological development provides an improvement in the quality of life due to easiness, speed and flexibility in the access to the information. In the biomedical area, the technology is admitted as an important allied, allowing the fast development of methods and techniques that assist the professional in the health care. Recent advances in the computerized analysis of medical images contribute for the precocious diagnosis of a series of diseases. In this work a methodology for the development of a computational system for characterization of patterns in pulmonary images, based in techniques of artificial neural networks is presented. In the study, has searched for the verification the use of self-organizing neural networks as a feature extraction and dimensionality reduction tool of chest radiographs, willing to characterize interstitial lung disease. For the dimensionality reduction and feature extraction, an algorithm based on Self-Organizing Maps (SOM) was implemented, with some variations, getting a reduction of about 3 million pixels that it composes an image, for 240 elements. For the pattern classification, a Multilayer Perceptron (MLP) was used, validated with the leave-one-out methodology. With a database containing 79 samples of linear pattern, 37 samples of nodular pattern, 30 samples of mixed pattern, and 72 samples of normal pattern, the classifier provided an average result of 89.5% of right classification, with 100% of right classification for linear pattern, 67.5% for nodular pattern, 63.3% for mixed pattern, and 100% for normal pattern. The results prove the validity of the methodology.
|
355 |
Image and video analysis by local descriptors and deformable image registrationGuo, Y. (Yimo) 03 June 2013 (has links)
Abstract
Image description plays an important role in representing inherent properties of entities and scenes in static images. Within the last few decades, it has become a fundamental issue of many practical vision tasks, such as texture classification, face recognition, material categorization, and medical image processing. The study of static image analysis can also be extended to video analysis, such as dynamic texture recognition, classification and synthesis.
This thesis contributes to the research and development of image and video analysis from two aspects.
In the first part of this work, two image description methods are presented to provide discriminative representations for image classification. They are designed in unsupervised (i.e., class labels of texture images are not available) and supervised (i.e., class labels of texture images are available) manner, respectively. First, a supervised model is developed to learn discriminative local patterns, which formulates the image description as an integrated three-layered model to estimate an optimal pattern subset of interest by simultaneously considering the robustness, discriminative power and representation capability of features. Second, in the case that class labels of training images are unavailable, a linear configuration model is presented to describe microscopic image structures in an unsupervised manner, which is subsequently combined together with a local descriptor: local binary pattern (LBP). This description is theoretically verified to be rotation invariant and is able to provide a discriminative complement to the conventional LBPs.
In the second part of the thesis, based on static image description and deformable image registration, video analysis is studied for the applications of dynamic texture description, synthesis and recognition. First, a dynamic texture synthesis model is proposed to create a continuous and infinitely varying stream of images given a finite input video, which stitches video clips in the time domain by selecting proper matching frames and organizing them into a logical order. Second, a method for the application of facial expression recognition, which formulates the dynamic facial expression recognition problem as the construction of longitudinal atlases and groupwise image registration problem, is proposed. / Tiivistelmä
Kuvan deskriptiolla on tärkeä rooli staattisissa kuvissa esiintyvien luontaisten kokonaisuuksien ja näkymien kuvaamisessa. Viime vuosikymmeninä se on tullut perustavaa laatua olevaksi ongelmaksi monissa käytännön konenäön tehtävissä, kuten tekstuurien luokittelu, kasvojen tunnistaminen, materiaalien luokittelu ja lääketieteellisten kuvien analysointi. Staattisen kuva-analyysin tutkimusala voidaan myös laajentaa videoanalyysiin, kuten dynaamisten tekstuurien tunnistukseen, luokitteluun ja synteesiin.
Tämä väitöskirjatutkimus myötävaikuttaa kuva- ja videoanalyysin tutkimukseen ja kehittymiseen kahdesta näkökulmasta.
Työn ensimmäisessä osassa esitetään kaksi kuvan deskriptiomenetelmää erottelukykyisten esitystapojen luomiseksi kuvien luokitteluun. Ne suunnitellaan ohjaamattomiksi (eli tekstuurikuvien luokkien leimoja ei ole käytettävissä) tai ohjatuiksi (eli luokkien leimat ovat saatavilla). Aluksi kehitetään ohjattu malli oppimaan erottelukykyisiä paikallisia kuvioita, mikä formuloi kuvan deskriptiomenetelmän integroituna kolmikerroksisena mallina - tavoitteena estimoida optimaalinen kiinnostavien kuvioiden alijoukko ottamalla samanaikaisesti huomioon piirteiden robustisuus, erottelukyky ja esityskapasiteetti. Seuraavaksi, sellaisia tapauksia varten, joissa luokkaleimoja ei ole saatavilla, esitetään työssä lineaarinen konfiguraatiomalli kuvaamaan kuvan mikroskooppisia rakenteita ohjaamattomalla tavalla. Tätä käytetään sitten yhdessä paikallisen kuvaajan, eli local binary pattern (LBP) –operaattorin kanssa. Teoreettisella tarkastelulla osoitetaan kehitetyn kuvaajan olevan rotaatioinvariantti ja kykenevän tuottamaan erottelukykyistä, täydentävää informaatiota perinteiselle LBP-menetelmälle.
Työn toisessa osassa tutkitaan videoanalyysiä, perustuen staattisen kuvan deskriptioon ja deformoituvaan kuvien rekisteröintiin – sovellusaloina dynaamisten tekstuurien kuvaaminen, synteesi ja tunnistaminen. Aluksi ehdotetaan sellainen malli dynaamisten tekstuurien synteesiin, joka luo jatkuvan ja äärettömän kuvien virran annetusta äärellisen mittaisesta videosta. Menetelmä liittää yhteen videon pätkiä aika-avaruudessa valitsemalla keskenään yhteensopivia kuvakehyksiä videosta ja järjestämällä ne loogiseen järjestykseen. Seuraavaksi työssä esitetään sellainen uusi menetelmä kasvojen ilmeiden tunnistukseen, joka formuloi dynaamisen kasvojen ilmeiden tunnistusongelman pitkittäissuuntaisten kartastojen rakentamisen ja ryhmäkohtaisen kuvien rekisteröinnin ongelmana.
|
356 |
Model-Based Eye Detection and AnimationTrejo Guerrero, Sandra January 2006 (has links)
In this thesis we present a system to extract the eye motion from a video stream containing a human face and applying this eye motion into a virtual character. By the notation eye motion estimation, we mean the information which describes the location of the eyes in each frame of the video stream. Applying this eye motion estimation into a virtual character, we achieve that the virtual face moves the eyes in the same way than the human face, synthesizing eye motion into a virtual character. In this study, a system capable of face tracking, eye detection and extraction, and finally iris position extraction using video stream containing a human face has been developed. Once an image containing a human face is extracted from the current frame of the video stream, the detection and extraction of the eyes is applied. The detection and extraction of the eyes is based on edge detection. Then the iris center is determined applying different image preprocessing and region segmentation using edge features on the eye picture extracted. Once, we have extracted the eye motion, using MPEG-4 Facial Animation, this motion is translated into the Facial Animation arameters (FAPs). Thus we can improve the quality and quantity of Facial Animation expressions that we can synthesize into a virtual character.
|
357 |
Extraction and Application of Secondary Crease Information in Fingerprint Recognition SystemsHymér, Pontus January 2005 (has links)
This thesis states that cracks and scars, referred to as Secondary Creases, in fingerprint images can be used as means for aiding and complementing fingerprint recognition, especially in cases where there is not enough clear data to use traditional methods such as minutiae based or correlation techniques. A Gabor filter bank is used to extract areas with linear patterns, where after the Hough Transform is used to identify secondary creases in a r, theta space. The methods proposed for Secondary Crease extraction works well, and provides information about what areas in an image contains usable linear pattern. Methods for comparison is however not as robust, and generates False Rejection Rate at 30% and False Acceptance Rate at 20% on the proposed dataset that consists of bad quality fingerprints. In short, our methods still makes it possible to make use of fingerprint images earlier considered unusable in fingerprint recognition systems.
|
358 |
Feature extraction and selection for background modeling and foreground detection / Extraction et sélection de caractéristiques pour la détection d’objets mobiles dans des vidéosPacheco Do Espirito Silva, Caroline 10 May 2017 (has links)
Dans ce manuscrit de thèse, nous présentons un descripteur robuste pour la soustraction d’arrière-plan qui est capable de décrire la texture à partir d’une séquence d’images. Ce descripteur est moins sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux changements d’éclairage. Un autre descripteur pour la reconnaissance dynamique des textures est également proposé. Le descripteur permet d’extraire non seulement des informations de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo. Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe d'apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées pour chaque pixel afin de distinguer les objets de premier plan de l’arrière plan. En outre, notre proposition utilise un mécanisme pour mettre à jour l’importance relative de chaque caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire la complexité de la maintenance du modèle d’arrière-plan et aussi sa robustesse. Par contre, cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision. De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques basées sur le principe du « wagging ». Nous avons également adopté une approche basée sur le concept de « superpixel » au lieu de traiter chaque pixel individuellement. Cela augmente non seulement l’efficacité en termes de temps de calcul et de consommation de mémoire, mais aussi la qualité de la détection des objets mobiles. / In this thesis, we present a robust descriptor for background subtraction which is able to describe texture from an image sequence. The descriptor is less sensitive to noisy pixels and produces a short histogram, while preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture recognition is also proposed. This descriptor extracts not only color information, but also a more detailed information from video sequences. Finally, we present an ensemble for feature selection approach that is able to select suitable features for each pixel to distinguish the foreground objects from the background ones. Our proposal uses a mechanism to update the relative importance of each feature over time. For this purpose, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. However, this method only reaches the highest accuracy when the number of features is huge. In addition, each base classifier learns a feature set instead of individual features. To overcome these limitations, we extended our previous approach by proposing a new methodology for selecting features based on wagging. We also adopted a superpixel-based approach instead of a pixel-level approach. This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance of moving objects.
|
359 |
Automatic signature verification systemMalladi, Raghuram January 2013 (has links)
Philosophiae Doctor - PhD / In this thesis, we explore dynamic signature verification systems. Unlike other signature models, we use genuine signatures in this project as they are more appropriate in real world applications. Signature verification systems are typical examples of biometric devices that use physical and behavioral characteristics to verify that a person really is who he or she claims to be. Other popular biometric examples include fingerprint scanners and hand geometry devices. Hand written signatures have been used for some time to endorse financial transactions and legal contracts although little or no verification of signatures is done. This sets it apart from the other biometrics as it is well accepted method of authentication. Until more recently, only hidden Markov models were used for model construction. Ongoing research on signature verification has revealed that more accurate results can be achieved by combining results of multiple models. We also proposed to use combinations of multiple single variate models instead of single multi variate models which are currently being adapted by many systems. Apart from these, the proposed system is an attractive way for making financial transactions more secure and authenticate electronic documents as it can be easily integrated into existing transaction procedures and electronic communications
|
360 |
Single pixel robust approach for background subtraction for fast people-counting and direction estimationAdegboye, Adedolapo Olaide 10 June 2013 (has links)
People counting system involves the process of counting and estimating the number of people in a scene. The counting system has a number of useful applications, ranging from pedestrian traffic surveillance and monitoring the number of people that enters and leaves shopping malls to commercial buildings, vehicles and a number of other security-related applications. Over the years, significant progress has been made. However, people counting systems still have not overcome a number of challenges such as occlusions, human pose and direction, multiple people detection, varying lighting and weather conditions. The aim of this research is to present an optimal solution that is invariant to the challenges. That is, the outcome of the results will not be affected by the challenges. Also, the solution will handle the trade-off between the counting accuracy and the time it takes to implement the counting process. As a result, a new background subtraction method known as single pixel method is proposed. This is where useful features are collected from each scene using frame difference method. Then, these features are reduced into single pixels. The single pixels are then used to estimate the total number of people in the scene. Furthermore, a virtual-line direction-estimation method is presented where the directions in which the people are heading are estimated prior to counting. AFRIKAANS : Mense-telstelsels behels die proses van die tel en die beraming van die aantal mense op ’n toneel. Die telstelsel het ’n aantal nuttige toepassings wat wissel van voetgangerverkeer toesig en die monitering van die aantal mense wat binnekom en verlaat tot winkelsentrums, kommersiële geboue, voertuie, en ’n aantal ander sekuriteit-verwante programme. Oor die jare is beduidende vordering gemaak. Daar is egter ’n aantal uitdagings wat mense-telstelsels nog nie oorkom het nie, soos afsluiting, menslike inhou en rigting, die opsporing van veelvoudige mense, wisselende beligting en weerstoestande. Die doel van hierdie navorsing is om ’n optimale oplossing aan te bied, wat invariant is teen die uitdagings. Met ander woorde, die uitdagings sal nie die resultate affekteer nie. Die oplossing sal ook die uitruil tussen die tel akkuraatheid en die implementeringstyd van die telproses hanteer. As gevolg hiervan, is ’n nuwe agtergrondaftrekkingsmetode, wat bekend staan as ’n enkele beeldelement metode, voorgestel. Dit is waar die nuttige funksies van elke toneel, met behulp van die raamverskilmetode ingesamel word. Dan word hierdie eienskappe in enkele beeldelemente verminder. Die enkele beeldelemente word dan gebruik om die totale aantal mense in die toneel te skat. Verder is daar van ’n virtuele-lyn rigting-skatting metode gebruik gemaak wat die rigtings waarin die mense beweeg vooraf beraam. / Dissertation (MEng)--University of Pretoria, 2013. / Electrical, Electronic and Computer Engineering / unrestricted
|
Page generated in 0.107 seconds