• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 73
  • 23
  • 15
  • 10
  • 7
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 511
  • 511
  • 126
  • 117
  • 112
  • 103
  • 98
  • 94
  • 94
  • 74
  • 73
  • 69
  • 66
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Vyhledávání v multimodálních databázích / Multimodal Database Search

Krejčíř, Tomáš January 2009 (has links)
The field that deals with storing and effective searching of multimedia documents is called Information retrieval. This paper describes solution of effective searching in collections of shots. Multimedia documents are presented as vectors in high-dimensional space, because in such collection of documents it is easier to define semantics as well as the mechanisms of searching. The work aims at problems of similarity searching based on metric space, which uses distance functions, such as Euclidean, Chebyshev or Mahalanobis, for comparing global features and cosine or binary rating for comparing local features. Experiments on the TRECVid dataset compare implemented distance functions. Best distance function for global features appears to be Mahalanobis and for local features cosine rating.
382

Delaunay-based Vector Segmentation of Volumetric Medical Images / Vektorová segmentace objemových medicínských dat založená na Delaunay triangulaci

Španěl, Michal January 2011 (has links)
Image segmentation plays an important role in medical image analysis. Many segmentation algorithms exist. Most of them produce data which are more or less not suitable for further surface extraction and anatomical modeling of human tissues. In this thesis, a novel segmentation technique based on the 3D Delaunay triangulation is proposed. A modified variational tetrahedral meshing approach is used to adapt a tetrahedral mesh to the underlying CT volumetric data, so that image edges are well approximated in the mesh. In order to classify tetrahedra into regions/tissues whose characteristics are similar, three different clustering schemes are presented. Finally, several methods for improving quality of the mesh and its adaptation to the image structure are also discussed.
383

Comparing Geomorphometric Pattern Recognition Methods for Semi-Automated Landform Mapping

Hassan, Wael January 2020 (has links)
No description available.
384

Automatic Feature Extraction for Human Activity Recognitionon the Edge

Cleve, Oscar, Gustafsson, Sara January 2019 (has links)
This thesis evaluates two methods for automatic feature extraction to classify the accelerometer data of periodic and sporadic human activities. The first method selects features using individual hypothesis tests and the second one is using a random forest classifier as an embedded feature selector. The hypothesis test was combined with a correlation filter in this study. Both methods used the same initial pool of automatically generated time series features. A decision tree classifier was used to perform the human activity recognition task for both methods.The possibility of running the developed model on a processor with limited computing power was taken into consideration when selecting methods for evaluation. The classification results showed that the random forest method was good at prioritizing among features. With 23 features selected it had a macro average F1 score of 0.84 and a weighted average F1 score of 0.93. The first method, however, only had a macro average F1 score of 0.40 and a weighted average F1 score of 0.63 when using the same number of features. In addition to the classification performance this thesis studies the potential business benefits that automation of feature extractioncan result in. / Denna studie utvärderar två metoder som automatiskt extraherar features för att klassificera accelerometerdata från periodiska och sporadiska mänskliga aktiviteter. Den första metoden väljer features genom att använda individuella hypotestester och den andra metoden använder en random forest-klassificerare som en inbäddad feature-väljare. Hypotestestmetoden kombinerades med ett korrelationsfilter i denna studie. Båda metoderna använde samma initiala samling av automatiskt genererade features. En decision tree-klassificerare användes för att utföra klassificeringen av de mänskliga aktiviteterna för båda metoderna. Möjligheten att använda den slutliga modellen på en processor med begränsad hårdvarukapacitet togs i beaktning då studiens metoder valdes. Klassificeringsresultaten visade att random forest-metoden hade god förmåga att prioritera bland features. Med 23 utvalda features erhölls ett makromedelvärde av F1 score på 0,84 och ett viktat medelvärde av F1 score på 0,93. Hypotestestmetoden resulterade i ett makromedelvärde av F1 score på 0,40 och ett viktat medelvärde av F1 score på 0,63 då lika många features valdes ut. Utöver resultat kopplade till klassificeringsproblemet undersöker denna studie även potentiella affärsmässiga fördelar kopplade till automatisk extrahering av features.
385

An Automated Approach to Mapping Ocean Front Features Using Sentinel-1 with Examples from the Gulf Stream and Agulhas Current

Newall, Andrew 19 April 2023 (has links)
This study examines the efficacy of Sentinel-1 Radial Velocity (RVL) imagery at determining the position of ocean current front features, using the Gulf Stream (GS) and Agulhas Current (AC) as case studies. Fronts derived from RVL imagery are compared to fronts derived from Sea Surface Temperature (SST) imagery, specifically Multi-scale Ultra-high Resolution Sea Surface Temperature Analysis (MURSST) data. In the case of the GS, front locations from the Naval Oceanographic Office (NAVOCEANO) were also used for comparison. Only the northern walls of ocean current features are considered in this study, which is broken into three main steps: Preprocessing, front extraction, and front comparison. First, RVL imagery is selected from Sentinel-1 ocean products, preprocessed to remove antenna mispointing artifacts, and all products from the same orbit are combined into a single swath. Second, front features are extracted from both the RVL and MURSST imagery using a ridge detection algorithm, the main ocean current is chosen from all ridge features using a ranking algorithm, and the northern wall of this current is extracted. Third, the RVL, SST, and in the case of the GS, NAVOCEANO GS locations, features are compared using a symmetric Hausdorff Distance (HD) measure, and Mean Hausdorff Distance (MHD). In some cases, the automatic front extraction failed by either misclassifying an eddy or similar ocean feature as the ocean current in either the RVL or SST image or failed to extract the entire length of the front visible within the image. All the SST and RVL fronts were classified manually to determine the success rate of the automatic front extraction and to exclude failed front extractions from the analysis, as they are not accurate representations of the SST and RVL data’s ability to detect fronts. In special cases, the RVL image itself does not detect the entire ocean current, such that there are noticeable gaps in the ocean current. Similarly, in special cases the MURSST does not detect the entire ocean current. The automatic front extraction succeeded 65% of the time, including the special cases. The results demonstrated that RVL products were effective at determining the location of ocean fronts where the angle of the front's normal vector is within approximately 40° of the sensor’s azimuthal heading. A mean HD of 31.9 km and a mean MHD of 13.2 km was calculated for all front pairs over all study areas. The RVL fronts appeared consistently to the north of the SST fronts, with an average offset of 25.4 km between the centroids of the SST and RVL fronts. Positive correlations were noted between cloud coverage and MURSST error in both study regions. Several RVL images detected ocean currents in regions of high MURSST error where the MURSST did not detect the ocean currents, suggesting that RVL may provide more accuracy than SST-based products in clouded regions where there is no auxiliary data.
386

Industrial 3D Anomaly Detection and Localization Using Unsupervised Machine Learning

Bärudde, Kevin, Gandal, Marcus January 2023 (has links)
Detecting defects in industrially manufactured products is crucial to ensure their safety and quality. This process can be both expensive and error-prone if done manually, making automated solutions desirable. There is extensive research on industrial anomaly detection in images, but recent studies have shown that adding 3D information can increase the performance. This thesis aims to extend the 2D anomaly detection framework, PaDiM, to incorporate 3D information. The proposed methods combine RGB with depth maps or point clouds and the effects of using PointNet++ and vision transformers to extract features are investigated. The methods are evaluated on the MVTec 3D-AD public dataset using the metrics image AUROC, pixel AUROC and AUPRO, and on a small dataset collected with a Time-of-Flight sensor. This thesis concludes that the addition of 3D information improves the performance of PaDiM and vision transformers achieve the best results, scoring an average image AUROC of 86.2±0.2 on MVTec 3D-AD.
387

DRESS & GO: Deep belief networks and Rule Extraction Supported by Simple Genetic Optimization / DRESS & GO: Deep belief networks and Rule Extraction Supported by Simple Genetic Optimization

Švaralová, Monika January 2018 (has links)
Recent developments in social media and web technologies offer new opportunities to access, analyze and process ever-increasing amounts of fashion-related data. In the appealing context of design and fashion, our main goal is to automatically suggest fashionable outfits based on the preferences extracted from real-world data provided either by individual users or gathered from the internet. In our case, the clothing items have the form of 2D-images. Especially for visual data processing tasks, recent models of deep neural networks are known to surpass human performance. This fact inspired us to apply the idea of transfer learning to understand the actual variability in clothing items. The principle of transfer learning consists in extracting the internal representa- tions formed in large convolutional networks pre-trained on general datasets, e.g., ImageNet, and visualizing its (similarity) structure. Together with transfer learn- ing, clustering algorithms and the image color schemes can be, namely, utilized when searching for related outfit items. Viable means applicable to generating new out- fits include deep belief networks and genetic algorithms enhanced by a convolutional network that models the outfit fitness. Although fashion-related recommendations remain highly subjective, the results we have achieved...
388

A Computational Fluid Dynamics Feature Extraction Method Using Subjective Logic

Mortensen, Clifton H. 08 July 2010 (has links) (PDF)
Computational fluid dynamics simulations are advancing to correctly simulate highly complex fluid flow problems that can require weeks of computation on expensive high performance clusters. These simulations can generate terabytes of data and pose a severe challenge to a researcher analyzing the data. Presented in this document is a general method to extract computational fluid dynamics flow features concurrent with a simulation and as a post-processing step to drastically reduce researcher post-processing time. This general method uses software agents governed by subjective logic to make decisions about extracted features in converging and converged data sets. The software agents are designed to work inside the Concurrent Agent-enabled Feature Extraction concept and operate efficiently on massively parallel high performance computing clusters. Also presented is a specific application of the general feature extraction method to vortex core lines. Each agent's belief tuple is quantified using a pre-defined set of information. The information and functions necessary to set each component in each agent's belief tuple is given along with an explanation of the methods for setting the components. A simulation of a blunt fin is run showing convergence of the horseshoe vortex core to its final spatial location at 60% of the converged solution. Agents correctly select between two vortex core extraction algorithms and correctly identify the expected probabilities of vortex cores as the solution converges. A simulation of a delta wing is run showing coherently extracted primary vortex cores as early as 16% of the converged solution. Agents select primary vortex cores extracted by the Sujudi-Haimes algorithm as the most probable primary cores. These simulations show concurrent feature extraction is possible and that intelligent agents following the general feature extraction method are able to make appropriate decisions about converging and converged features based on pre-defined information.
389

A Hybrid Multibiometric System for Personal Identification Based on Face and Iris Traits. The Development of an automated computer system for the identification of humans by integrating facial and iris features using Localization, Feature Extraction, Handcrafted and Deep learning Techniques.

Nassar, Alaa S.N. January 2018 (has links)
Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. This PhD thesis is focused on the combination of both the face and the left and right irises, in a unified hybrid multimodal biometric identification system using different fusion approaches at the score and rank level. Firstly, the facial features are extracted using a novel multimodal local feature extraction approach, termed as the Curvelet-Fractal approach, which based on merging the advantages of the Curvelet transform with Fractal dimension. Secondly, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the deep learning approaches is proposed, Multimodal Deep Face Recognition (MDFR) framework, to address the face recognition problem in unconstrained conditions. Thirdly, an efficient deep learning system is employed, termed as IrisConvNet, whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from an iris image. Finally, The performance of the unimodal and multimodal systems has been evaluated by conducting a number of extensive experiments on large-scale unimodal databases: FERET, CAS-PEAL-R1, LFW, CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 and IITD and MMU1, and SDUMLA-HMT multimodal dataset. The results obtained have demonstrated the superiority of the proposed systems compared to the previous works by achieving new state-of-the-art recognition rates on all the employed datasets with less time required to recognize the person’s identity.Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. This PhD thesis is focused on the combination of both the face and the left and right irises, in a unified hybrid multimodal biometric identification system using different fusion approaches at the score and rank level. Firstly, the facial features are extracted using a novel multimodal local feature extraction approach, termed as the Curvelet-Fractal approach, which based on merging the advantages of the Curvelet transform with Fractal dimension. Secondly, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the deep learning approaches is proposed, Multimodal Deep Face Recognition (MDFR) framework, to address the face recognition problem in unconstrained conditions. Thirdly, an efficient deep learning system is employed, termed as IrisConvNet, whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from an iris image. Finally, The performance of the unimodal and multimodal systems has been evaluated by conducting a number of extensive experiments on large-scale unimodal databases: FERET, CAS-PEAL-R1, LFW, CASIA-Iris-V1, CASIA-Iris-V3 Interval, MMU1 and IITD and MMU1, and SDUMLA-HMT multimodal dataset. The results obtained have demonstrated the superiority of the proposed systems compared to the previous works by achieving new state-of-the-art recognition rates on all the employed datasets with less time required to recognize the person’s identity. / Higher Committee for Education Development in Iraq
390

Algorithms to Process and Measure Biometric Information Content in Low Quality Face and Iris Images

Youmaran, Richard January 2011 (has links)
Biometric systems allow identification of human persons based on physiological or behavioral characteristics, such as voice, handprint, iris or facial characteristics. The use of face and iris recognition as a way to authenticate user’s identities has been a topic of research for years. Present iris recognition systems require that subjects stand close (<2m) to the imaging camera and look for a period of about three seconds until the data are captured. This cooperative behavior is required in order to capture quality images for accurate recognition. This will eventually restrict the amount of practical applications where iris recognition can be applied, especially in an uncontrolled environment where subjects are not expected to cooperate such as criminals and terrorists, for example. For this reason, this thesis develops a collection of methods to deal with low quality face and iris images and that can be applied for face and iris recognition in a non-cooperative environment. This thesis makes the following main contributions: I. For eye and face tracking in low quality images, a new robust method is developed. The proposed system consists of three parts: face localization, eye detection and eye tracking. This is accomplished using traditional image-based passive techniques such as shape information of the eye and active based methods which exploit the spectral properties of the pupil under IR illumination. The developed method is also tested on underexposed images where the subject shows large head movements. II. For iris recognition, a new technique is developed for accurate iris segmentation in low quality images where a major portion of the iris is occluded. Most existing methods perform generally quite well but tend to overestimate the occluded regions, and thus lose iris information that could be used for identification. This information loss is potentially important in the covert surveillance applications we consider in this thesis. Once the iris region is properly segmented using the developed method, the biometric feature information is calculated for the iris region using the relative entropy technique. Iris biometric feature information is calculated using two different feature decomposition algorithms based on Principal Component Analysis (PCA) and Independent Component Analysis (ICA). III. For face recognition, a new approach is developed to measure biometric feature information and the changes in biometric sample quality resulting from image degradations. A definition of biometric feature information is introduced and an algorithm to measure it proposed, based on a set of population and individual biometric features, as measured by a biometric algorithm under test. Examples of its application were shown for two different face recognition algorithms based on PCA (Eigenface) and Fisher Linear Discriminant (FLD) feature decompositions.

Page generated in 0.4134 seconds