Spelling suggestions: "subject:"quantisierung"" "subject:"vektorquantisierung""
1 |
Change without time relationalism and field quantization /Simon, Johannes. January 1900 (has links) (PDF)
Regensburg, Univ., Diss., 2004. / Computerdatei im Fernzugriff.
|
2 |
Change without time relationalism and field quantization /Simon, Johannes. January 1900 (has links) (PDF)
Regensburg, University, Diss., 2004.
|
3 |
Fedosov Quantization and Perturbative Quantum Field TheoryCollini, Giovanni 11 May 2017 (has links) (PDF)
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (\\\"phase space\\\"). His algorithm gives a non-commutative, but associative, product (a so-called \\\"star-product\\\") between smooth phase space functions parameterized by Planck\\\'s constant ℏ, which is treated as a deformation parameter. In the limit as ℏ goes to zero, the star product commutator goes to ℏ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, we develop a generalization of Fedosov\\\'s method which applies to the infinite-dimensional symplectic \\\"manifolds\\\" that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of this method to more standard perturbative quantization schemes in quantum field theory.
|
4 |
Fedosov Quantization and Perturbative Quantum Field TheoryCollini, Giovanni 08 December 2016 (has links)
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (\\\"phase space\\\"). His algorithm gives a non-commutative, but associative, product (a so-called \\\"star-product\\\") between smooth phase space functions parameterized by Planck\\\''s constant ℏ, which is treated as a deformation parameter. In the limit as ℏ goes to zero, the star product commutator goes to ℏ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, we develop a generalization of Fedosov\\\''s method which applies to the infinite-dimensional symplectic \\\"manifolds\\\" that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of this method to more standard perturbative quantization schemes in quantum field theory.
|
Page generated in 0.0601 seconds