• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Single-Molecule Studies of Eukaryotic DNA Replication

Loveland, Anna Barbara January 2012 (has links)
DNA replication is a fundamental cellular process. However, the structure and dynamics of the eukaryotic DNA replication machinery remain poorly understood. A soluble extract system prepared from Xenopus eggs recapitulates eukaryotic DNA replication outside of a cell on a variety of DNA templates. This system has been used to reveal many aspects of DNA replication using a variety of ensemble biochemical techniques. Single-molecule fluorescence imaging is a powerful tool to dissect biochemical mechanisms. By immobilizing or confining a substrate, its interaction with individual, soluble, fluorescently-labeled reactants can be imaged over time and without the need for synchrony. These molecular movies reveal binding parameters of the reactant and any population heterogeneity. Moreover, if the experiments are imaged in wide-field format, the location or motion of the labeled species along the substrate can be followed with nanometer accuracy. This dissertation describes the use and development of novel single-molecule fluorescence imaging techniques to study eukaryotic DNA replication. A biophysical characterization of a replication fork protein, PCNA, revealed both helical and non-helical sliding modes along DNA. Previous experiments demonstrate that the egg extracts efficiently replicate surface-immobilized linear DNA. This finding suggested replication of DNA could be followed as motion of the replication fork along the extended DNA. However, individual proteins bound at the replication fork could not be visualized in the wide-field due to the background from the high concentration of the fluorescent protein needed to compete with the extract’s endogenous protein. To overcome this concentration barrier, I have developed a wide-field technique that enables sensitive detection of single molecules at micromolar concentrations of the labeled protein of interest. The acronym for this method, PhADE, denotes three essential steps: (1) Localized PhotoActivation of fluorescence at the immobilized substrate, (2) Diffusion of unbound fluorescent molecules to reduce the background and (3) Excitation and imaging of the substrate-bound molecules. PhADE imaging of flap endonuclease I (Fen1) during replication revealed the time-evolved pattern of replication initiation, elongation and termination and the kinetics of Fen1 exchange during Okazaki fragment maturation. In the future, PhADE will enable the elucidation of the dynamic events at the eukaryotic DNA replication fork. PhADE will also be broadly applicable to the investigation of other complex biochemical process and low affinity interactions. It will be especially useful to those researchers wishing to correlate motion with binding events.
2

A single molecule view of FEN1 remarkable substrate recognition, perfect catalysis and regulation

Zaher, Manal 05 1900 (has links)
DNA replication is one of the most fundamental processes in all living organisms. Its semi-discontinuous nature dictates that the lagging strand is synthesized in short fragments called Okazaki fragments. In eukaryotes, each Okazaki fragment is initiated by an ~ 30-40 nucleotide-long RNA-DNA hybrid primer that is synthesized by Pol α-primase complex. To ensure genomic stability, the RNA primer has to be excised, any misincorporations by Pol α have to be corrected for and finally the resulting nick has to be sealed generating a contiguous strand. This feat is accomplished by a highly coordinated and regulated process called Okazaki fragment maturation. At the center of this process are 5’ nucleases, which are structure-specific nucleases that catalyze the incision of phosphodiester bonds one nucleotide into the 5’ end of ssDNA/dsDNA junctions. Previous structural and biochemical studies have shed some light on the mechanism of FEN1 substrate recognition, its catalysis and regulation. However, many gaps in our understanding of this remarkable nuclease still persist. Moreover, the choice between the short- and long-flap pathways is still elusive. Finally, the mechanism of the coordination among the different enzymatic activities of the polymerase, the nuclease and the ligase during Okazaki fragment maturation is still debatable. In this work, we set out to study FEN1 substrate recognition, catalysis and regulation using single molecule techniques. We show that FEN1 employs a sophisticated substrate recognition mechanism through which it actively distorts the DNA to ~100˚ bent angle. It also displays a remarkable selectivity towards its cognate substrate and avoids off-target substrate by a lock-down mechanism that commits the enzyme for catalysis on cognate substrates while promoting the dissociation of non-cognate substrates. We further characterized FEN1 reaction from substrate binding/bending to product handoff and built a comprehensive kinetic scheme that shows FEN1 releasing its product in two steps. Finally, we uncovered an unprecedented role of FEN1 in the choice between short- and long-flap pathways.
3

High Temporal Resolution DNA-Flap Endonuclease 1 Interaction at the Single Molecule Level

Harris, Paul David 07 1900 (has links)
Numerous short flapped DNA structures are created during the semi-discontinuous replication. These toxic intermediates are quickly resolved to produce a fully intact duplex of replicated DNA. Structure specific nuclease are key to resolving these structures, and show a high degree of specificity for their cognate substrate structures while being essentially insensitive to nucleotide sequence. Herein I demonstrate through confocal based single molecule experiments that the 5’ structure specific nuclease Flap Endonuclease 1 (FEN1) achieves its substrate specificity by coupling the bending of DNA substrate with structuring of the active site in a way that non-cognate structures binding is significantly destabilized and enzymatic features are incapable of structuring in the absence of particular substrate features, in particular a single nucleotide 3’ flap the FEN1 induces in nearly all DNA substrates. Debate remained over whether DNA was bound via a conformational capture or induced fit mechanism, and so I proceed to investigate the dynamics of the DNA itself in solution. Conclusions about conformational capture or induced fit remain elusive, however I did determine that DNA structures are rigidified by charge repulsion, an effect lessened by the salt concentration, which functions to shield the negative charge of DNA from itself. Additionally unstacking of the DNA in nicked structures incurs a significant free energy penalty, which FEN1 overcomes by its hydrophobic wedge motif, lending credence to an induced fit mechanism.
4

Using single molecule fluorescence to study substrate recognition by a structure-specific 5’ nuclease

Rashid, Fahad 12 1900 (has links)
Nucleases are integral to all DNA processing pathways. The exact nature of substrate recognition and enzymatic specificity in structure-specific nucleases that are involved in DNA replication, repair and recombination has been under intensive debate. The nucleases that rely on the contours of their substrates, such as 5’ nucleases, hold a distinctive place in this debate. How this seemingly blind recognition takes place with immense discrimination is a thought-provoking question. Pertinent to this question is the observation that even minor variations in the substrate provoke extreme catalytic variance. Increasing structural evidence from 5’ nucleases and other structure-specific nuclease families suggest a common theme of substrate recognition involving distortion of the substrate to orient it for catalysis and protein ordering to assemble active sites. Using three single-molecule (sm)FRET approaches of temporal resolution from milliseconds to sub-milliseconds, along with various supporting techniques, I decoded a highly sophisticated mechanism that show how DNA bending and protein ordering control the catalytic selectivity in the prototypic system human Flap Endonuclease 1 (FEN1). Our results are consistent with a mutual induced-fit mechanism, with the protein bending the DNA and the DNA inducing a protein-conformational change, as opposed to functional or conformational selection mechanism. Furthermore, we show that FEN1 incision on the cognate substrate occurs with high efficiency and without missed opportunity. However, when FEN1 encounters substrates that vary in their physical attributes to the cognate substrate, cleavage happens after multiple trials During the course of my work on FEN1, I found a novel photophysical phenomena of protein-induced fluorescence quenching (PIFQ) of cyanine dyes, which is the opposite phenomenon of the well-known protein-induced fluorescence enhancement (PIFE). Our observation and characterization of PIFQ led us to further investigate the general mechanism of fluorescence modulation and how the initial fluorescence state of the DNA-dye complex plays a fundamental role in setting up the stage for the subsequent modulation by protein binding. Within this paradigm, we propose that enhancement and quenching of fluorescence upon protein binding are simply two different faces of the same process. Our observations and correlations eliminate the current inconvenient arbitrary nature of fluorescence modulation experimental design.
5

Trinucleotide Repeat Instability Modulated by DNA Repair Enzymes and Cofactors

Ren, Yaou 29 May 2018 (has links)
Trinucleotide repeat (TNR) instability including repeat expansions and repeat deletions is the cause of more than 40 inherited incurable neurodegenerative diseases and cancer. TNR instability is associated with DNA damage and base excision repair (BER). In this dissertation research, we explored the mechanisms of BER-mediated TNR instability via biochemical analysis of the BER protein activities, DNA structures, protein-protein interaction, and protein-DNA interaction by reconstructing BER in vitro using synthesized oligonucleotide TNR substrates and purified human proteins. First, we evaluated a germline DNA polymerase β (pol β) polymorphic variant, pol βR137Q, in leading TNR instability-mediated cancers or neurodegenerative diseases. We find that the pol βR137Q has slightly weaker DNA synthesis activity compared to that of wild-type (WT) pol β. Because of the similar abilities between pol βR137Q and WT pol β in bypassing a template loop structure, both pol βR137Q and WT pol β induces similar amount of repeat deletion. We conclude that the slightly weaker DNA synthesis activity of pol βR137Q does not alter the TNR instability compared to that of WT pol β, suggesting that the pol βR137Q carriers do not have an altered risk in developing TNR instability-mediated human diseases. We then investigated the role of DNA synthesis activities of DNA polymerases in modulating TNR instability. We find that pol βY265C and pol ν with very weak DNA synthesis activities predominantly promote TNR deletions. We identify that the sequences of TNRs may also affect DNA synthesis and alter the outcomes of TNR instability. By inhibiting the DNA synthesis activity of pol β using a pol β inhibitor, we find that the outcome of TNR instability is shifted toward repeat deletions. The results provide the direct evidence that DNA synthesis activity of DNA polymerases can be utilized as a potential therapeutic target for treating TNR expansion diseases. Finally, we explored the role of post-translational modification (PTM) of proliferating cell nuclear antigen (PCNA) on TNR instability. We find that ubiquitinated PCNA (ub-PCNA) stimulates Fanconi associated nuclease 1 (FAN1) 5’-3’ exonucleolytic activities directly on hairpin structures, coordinating flap endonuclease 1 (FEN1) in removing difficult secondary structures, thereby suppressing TNR expansions. The results suggest a role of mono-ubiquitination of PCNA in maintaining TNR stability by regulating nucleases switching. Our results suggest enzymatic activities of DNA polymerases and nucleases and the regulation of the activities by PTM play important roles in BER-mediated TNR instability. This research provides the molecular basis for future development of new therapeutic strategies for prevention and treatment of TNR-mediated neurodegenerative diseases.

Page generated in 0.0392 seconds