• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Group-13-Bridged [1]- and [1.1]Metallacyclophanes

Lund, Clinton Laine 26 November 2008
The synthesis and characterization of the first aluminum- and gallium-bridged [1]chromarenophanes, [1]vanadarenophanes and [1]molybdarenophanes are described; these compounds belong to a class of compounds referred to as [1]metallacyclophanes. [1]Metallacyclophanes are strained, ring-tilted complexes that have a propensity to undergo ring-opening polymerizations (ROPs). On the basis of using bulky, intramolecularly coordinating ligands, the [1]metallacyclophanes described within have been synthesized and characterized. By exploring known transition-metal catalyzed ROP methodologies, a serendipitous discovery has been made. The gallium-bridged [1]molybdarenophane undergoes ring-opening reactions catalyzed by sigma donors such as thf and triethylphospine or by pi donors such as 1,5-cyclooctadiene. Known transition-metal catalyzed ROP methodologies proved to be unsuccessful with the aluminum- and gallium-bridged [1]metallarenophanes, possibly due to steric overprotection.<p> The synthesis and characterization of the first [1.1]metallarenophanes is described. By utilizing ligands with dimethylamine-donor functionalities, aluminum- and gallium-bridged unstrained [1.1]chromarenophanes and [1.1]molybdarenophanes have been isolated. Gallium-bridged [1.1]metallarenophanes have been determined to be Class II compounds through investigations by cyclic voltammetry. Aluminum-bridged [1.1]metallarenophanes can not be successfully characterized by electrochemical measurements because of their acute sensitivity towards oxygen and moisture. All isolated [1.1]metallarenophanes adopt anti conformations in the solid state. Several new reactive aluminum, gallium and indium and compounds have been prepared that incorporate bulky donor ligands.<p> All new compounds have been characterized by NMR spectroscopy, X-ray crystallography, mass spectrometry and elemental analysis. When comparing solid-state structures of [1]metallarenophanes, some generalizations can be made. For a given [1]metallarenophane gallium-bridged compounds are always more tilted when compared to their respective aluminum-bridged compound for reasons that still remain unknown. If the bridging element is kept constant, the tilt angles are found to increase in the order of Mo > V > Cr for the [1]metallarenophanes, which can be attributed directly to their respective metallic radii.
2

Synthesis and Characterization of Group-13-Bridged [1]- and [1.1]Metallacyclophanes

Lund, Clinton Laine 26 November 2008 (has links)
The synthesis and characterization of the first aluminum- and gallium-bridged [1]chromarenophanes, [1]vanadarenophanes and [1]molybdarenophanes are described; these compounds belong to a class of compounds referred to as [1]metallacyclophanes. [1]Metallacyclophanes are strained, ring-tilted complexes that have a propensity to undergo ring-opening polymerizations (ROPs). On the basis of using bulky, intramolecularly coordinating ligands, the [1]metallacyclophanes described within have been synthesized and characterized. By exploring known transition-metal catalyzed ROP methodologies, a serendipitous discovery has been made. The gallium-bridged [1]molybdarenophane undergoes ring-opening reactions catalyzed by sigma donors such as thf and triethylphospine or by pi donors such as 1,5-cyclooctadiene. Known transition-metal catalyzed ROP methodologies proved to be unsuccessful with the aluminum- and gallium-bridged [1]metallarenophanes, possibly due to steric overprotection.<p> The synthesis and characterization of the first [1.1]metallarenophanes is described. By utilizing ligands with dimethylamine-donor functionalities, aluminum- and gallium-bridged unstrained [1.1]chromarenophanes and [1.1]molybdarenophanes have been isolated. Gallium-bridged [1.1]metallarenophanes have been determined to be Class II compounds through investigations by cyclic voltammetry. Aluminum-bridged [1.1]metallarenophanes can not be successfully characterized by electrochemical measurements because of their acute sensitivity towards oxygen and moisture. All isolated [1.1]metallarenophanes adopt anti conformations in the solid state. Several new reactive aluminum, gallium and indium and compounds have been prepared that incorporate bulky donor ligands.<p> All new compounds have been characterized by NMR spectroscopy, X-ray crystallography, mass spectrometry and elemental analysis. When comparing solid-state structures of [1]metallarenophanes, some generalizations can be made. For a given [1]metallarenophane gallium-bridged compounds are always more tilted when compared to their respective aluminum-bridged compound for reasons that still remain unknown. If the bridging element is kept constant, the tilt angles are found to increase in the order of Mo > V > Cr for the [1]metallarenophanes, which can be attributed directly to their respective metallic radii.
3

Synthèse et utilisation de nouveaux catalyseurs phosphorés à noyau ferrocénophane / New chiral phosphorus derivatives with ferrocenophane scaffolds : synthesis and catalytic behaviour

Néel, Mathilde 28 October 2011 (has links)
La catalyse est par définition l’utilisation d’une quantité sous stœchiométrique d’un composé accélérant une réaction, sans entrer dans son bilan réactionnel. Si le catalyseur est une molécule organique chirale, nous pouvons effectuer des réactions d’organocatalyse asymétrique. D’autre part, si les phosphines trivalentes sont largement employées comme ligands en catalyse organométallique, elles présentent également une réactivité complémentaire aux amines en organocatalyse. Une nouvelle phosphine chirale à noyau ferrocénophane, le FerroPHANE, a été récemment développée et utilisée avec succès au laboratoire. C’est dans ce contexte que s’inscrivent mes travaux de thèse portant à la fois sur l’étude de nouveaux processus catalytiques et la synthèse de nouveaux dérivés phosphorés chiraux. Tout d’abord, une réaction de cyclisation [3+2] entre des oléfines et des allénylphosphonates catalysée par le FerroPHANE a été développée (excès énantiomériques compris entre 84 et 91%). Dans un second temps, des groupements aryles ont été introduits sur le noyau ferrocénique du FerroPHANE afin de moduler sa réactivité et son énantiosélectivité. Enfin, une nouvelle famille de phosphoramidites chiraux à noyau ferrocénique a été synthétisée et utilisée dans la synthèse de complexes de platine. / Catalysis is the acceleration of a reaction by addition of a sub-stœchiometric amount of a compound. When catalyst is a chiral organic derivative, it is possible to obtain enantioenriched products by asymmetric organocatalysis. Moreover, if trivalent phosphines have been widely developed as ligand for organometallic catalysis, their reactivity is complementary to amines in organocatalysis. A new planar chiral phosphine with ferrocenophane scaffold was recently developed and successfully used in organocatalysed reactions by our team: FerroPHANE. In this context, we have been interesting both in the development of new enantioselective [3+2] cyclization reactions catalyzed by chiral trivalent phosphines and the development of new chiral phosphorus derivatives with ferrocenophane scaffolds. In a first part, new enantioselective [3+2] cyclization reactions between olefins and allenylphosphonates, catalyzed by FerroPHANE, have been successfully developed (enantiomeric excesses between 84 to 91%). In a second part, to modify the reactivity and the enantioselectivity of this new family of phosphines, aryl groups were introduced on the ferrocenyl scaffold. Finally, a new family of chiral phosphoramidites with ferrocenyl scaffold have been synthesized and applied to the synthesis of chiral platinum complexes.

Page generated in 0.0711 seconds