111 |
Induced magnetoelectric coupling at a ferroelectric-ferromagnetic interfaceCarvell, Jeffrey David 08 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Preparation and characterization of multiferroic materials in which ferroelectricity and ferromagnetism coexist would be a milestone for functionalized materials and devices. First, electric properties of polyvinylidene (PVDF) films fabricated using the Langmuir-Schaefer method have been studied. Films of different thickness were deposited on silicon substrates and analyzed using several techniques. X-ray diffraction (XRD) data showed that PVDF films crystallize at an annealing temperature above 130 °C. Polarization versus electric field (PE) ferroelectric measurements were done for samples prepared with electrodes. PE measurements show that the coercivity of the films increases as the maximum applied electric field increases. The coercivity dependence on the frequency of the applied electric field can be fitted as . The results also show that the coercivity decreases with increasing the thickness of PVDF film due to the pinning effect. Next, we have demonstrated that those PVDF properties can be controlled by applying an external magnetic field. Samples were created in a layered heterostructure, starting with a Fe thin film, PVDF above that, and followed by another thin film of Fe. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to study the interface between PVDF polymer films and ferromagnetic iron thin films. Conventional EXAFS was applied to identify the structure of a Fe film sandwiched between two PVDF layers. An electric signal was then applied to the polymer to study the effects polarizing the polymer has on the Fe atoms at the interface. This shows that the Fe atoms diffuse into the PVDF layer at the interface between the two layers. Polarizing the film causes further diffusion of Fe atoms into the polymer. We also found that as the applied magnetic field is changed, the switching of electric polarization for the PVDF displayed a dependence on the external magnetic field. We also noticed that both the coercivity and polarization for the PVDF polymer display hysteretic features as the applied magnetic field is changed. We also found that the thickness of both the iron layers and the PVDF layer has an effect on the magnetoelectric coupling in our samples. The same strain applied to a thicker PVDF layer becomes tougher to flip the polarization compared to a thinner PVDF layer. As the iron film thickness increases, the strain also increases, and the polarization of the PVDF polymer is more easily flipped. We also found that the magnetoelectric sensitivity increases as both the PVDF and iron layers increase in thickness. We have shown that it is possible to control the ferroelectric properties of a PVDF film by tuning the magnetic field in a heterostructure. Our experiments show a coupling between the electric polarization and applied magnetic field in multiferroic heterostructures much larger than any previously reported values. Previous reports have used inorganic materials for the ferroelectric layer. Organic polymers have an electric dipole originating at the molecular level due to atoms with different electronegativity that are free to rotate. To flip the polarization, the chains must rotate and the position of the atoms must change. This increases the force felt locally by those chains. Using this polymer, we are able to increase the magnetoelectric coupling.
|
112 |
Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : de l’expérience au modèle d’interaction / Eddy current non destructive testing of ferromagnetic materials : experimentation and modelingZorni, Chiara 28 February 2012 (has links)
La problématique étudiée est le contrôle non destructif par courants de Foucault de matériaux ferromagnétiques à l’aide d’un capteur à magnétorésistance géante (GMR). Durant ces travaux deux aspects complémentaires ont été abordés : l’un concerne la mesure expérimentale pour essayer de quantifier et de s’affranchir du bruit de structure et du champ magnétique rémanent, l’autre le développement d’un modèle numérique d’interaction. En ce qui concerne la partie expérimentale plusieurs études avec un capteur GMR qui présente un intérêt particulier en raison de sa bonne sensibilité à basses fréquences, de sa dynamique et de la relative simplicité de mise en œuvre ont été conduites et ont permis d’identifier et quantifier les phénomènes d’artefacts spécifiques aux matériaux ferromagnétiques : le bruit de structure et le champ magnétique rémanent. Une solution basée sur une combinaison linéaire des données expérimentales obtenues à plusieurs fréquences est appliquée pour atténuer le bruit dû à la structure du matériau. Le champ magnétique rémanent a été analysé expérimentalement et un circuit d’asservissement permettant de fixer un point de polarisation dans la zone de fonctionnement linéaire de la GMR et ainsi d’atténuer les perturbations dues aux champs magnétiques rémanents est mis en place. En parallèle et dans l’optique de développer des outils de simulation permettant de mieux comprendre les phénomènes physiques et ainsi d’optimiser les procédés de contrôle, un modèle numérique d’interaction simulant le cas du contrôle d’une pièce plane ferromagnétique d’une ou plusieurs couches pouvant contenir un ou plusieurs défauts est développé. Il étend un modèle déjà existant dans un cas non-ferromagnétique déjà intégré dans la plateforme de simulation CIVA développé par le CEA-LIST et permettant la simulation du Contrôle Non Destructif par Courants de Foucault. Il est basé sur une méthode d’intégrales de volume (VIM) et l’utilisation des tenseurs ou dyades de Green. La solution est obtenue après la discrétisation du volume de calcul et l’application d’une variante de Galerkin de la Méthode des Moments (MoM). La réponse de la sonde est ensuite calculée en appliquant le théorème de réciprocité de Lorentz. Des collaborations avec deux laboratoires universitaires (le Laboratoire de Génie Électrique de Paris (LGEP) et l’Université de Cassino (Italie)) ont permis de comparer les résultats issus des trois différents modèles sur un cas de la littérature. Les résultats se sont révélés satisfaisants et plusieurs études de convergence ont permis d’analyser la stabilité du modèle. / The aim of this work is the eddy-current testing (ECT) of ferromagnetic materials within magnetic sensors, such as Giant Magneto-Resistances (GMR). Two complementary aspects have been studied. Experimental measurements have been carried out in order to quantify and minimize the noise coming from the materials structure and residual magnetization. On the other hand, a model has been developed in order to be able to simulate the electromagnetic interactions between a ferromagnetic specimen and the EC probe. The GMR sensors are characterized by high sensitivity at low frequency, large dynamic range and are relatively easy to implement. The studies carried out during this thesis allowed us to identify and analyse the “ghost signals” due to magnetic materials. In order to minimize the noise coming from the materials structure, a linear multi-frequencies combination of experimental signals has been employed successfully and the detection of buried flaws has been improved. The residual magnetization in ferromagnetic materials has been experimentally analyzed and an electronic system has been realized to fix the polarisation point of the sensor in the linear response zone of the GMR. Thus, disturbances caused by residual magnetization are successfully reduced. Beside, in order to develop simulation tools aiming at improving the understanding of experimental signals and optimizing the performances of ECT procedures, a model has been developed to simulate the ECT of planar, stratified and ferromagnetic materials affected with multiple flaws. CEA developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. Following a previous work carried out at the laboratory and already integrated in the simulation platform CIVA, developed at CEA-LIST, the new model extends CIVA functionalities to the ferromagnetic planar case. Simulation results are obtained through the application of the Volume Integral Method (VIM) which involves the dyadic Green’s functions. Two coupled integral equations have to be solved and the numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments (MoM). Finally, the probe response is calculated by application of the Lorentz reciprocity theorem. A collaboration with the University of Cassino (Italy) and Laboratoire de Génie Electrique de Paris (France) allowed us to compare the three models on experimental and numerical results from literature. Results showed a good agreement between the three models and the model stability has been analyzed.
|
Page generated in 0.0936 seconds