• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 9
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 112
  • 31
  • 23
  • 22
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Anomalous hall effect in ferromagnetic metallic thin films /

Xu, Wenjin. January 2010 (has links)
Includes bibliographical references (p. 79-82).
42

Microstructure and magnetic properties of Co-(CoO, CoNiO2̳, NiO) and Cox̳Ni1̳-̳x̳-CoO nanocomposite thin films /

Yi, Jae-Young, January 2000 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2000. / On t.p. "2̳", "x̳", "1̳-̳x̳" are subscripts. Vita. Includes bibliographical references.
43

Magnetic ordering and dynamics of two transition metal oxide systems

Lago, Jorge January 2000 (has links)
No description available.
44

'5'7Fe Moessbauer studies of Fe-Si based amorphous ferromagnetic ribbons and thin films

Aghamohammadzadeh, H. January 1998 (has links)
No description available.
45

An investigation of spin-valves and related films by TEM

King, Jason Peters King January 1999 (has links)
No description available.
46

MHD Effects of a Ferritic Wall on Tokamak Plasmas

Hughes, Paul Ernest January 2016 (has links)
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak—Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
47

Electrostatic TEM studies of magnetic domains in thin iron films

Karamon, Hideaki 01 January 1980 (has links)
An electron microscope with electrostatic lenses was used for high resolution studies of magnetic domains in thin iron films. Observation methods used to determine the directions of local magnetization in iron thin films were the Lorentz method and the Foucault method. We studied how Bloch line-crosstie pairs and crosstie main walls behave in applied, in-plane magnetic fields. We found that crosstie main walls remain unchanged until crosstie density goes nearly to zero when the field is applied perpendicular to the main wall. A twisted type of domain appears where crossties disappear.
48

Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies

January 1946 (has links)
Charles Kittel. / "May 20, 1948." / Army Signal Corps Contract No. W-36-039 sc-32037. Contract OEMsr-262.
49

The COxFe₁₀₀₋x metal/native oxide multilayer /

Beach, Geoffrey S. D. January 2003 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2003. / Vita. Includes bibliographical references.
50

Study of a ferromagnetic semiconductor by the scanning Hall probe microscope

Kweon, Seongsoo, 1967- 18 September 2012 (has links)
The primary goal of my dissertation was to build a Scanning Hall Probe Microscope (SHPM) for studying the domain structure of a ferromagnetic semiconductor (Ga[subscript 0.94]Mn[subscript 0.06]). This new semiconductor may be used in the emerging field of spintronics, where both the charge and spin of an electron are utilized. The first part of this dissertation introduces the scanning probe microscopy techniques that are used for our homemade SHPM performance test and images. In chapter 2, general spintronics and ferromagnetic semiconductor are introduced. A compact design of our LT-SHPM is introduced in chapter 3. A unique taper seal based on stainless steel and Cu for opening/closing the vacuum chamber is used for our homemade SHPM. In chapter 4, Hall probes are discussed. In this chapter, ESD (Electrostatic discharge) and its repair work are discussed. Finally, in Chapter 5, SHPM imaging results of Ga[subscript 0.94]Mn[subscript 0.06]As are discussed. We observed stripe domain patterns. We also observed the domain patterns as a function of magnetic field and temperature. / text

Page generated in 0.0741 seconds