• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einfluss des Feuchtigkeitsgehalts des Wurzelkanaldentins auf die Entstehung und den Nachweis von Mikrorissen - Eine Mikro-Computertomografie-Studie / Moisture content of root canal dentin affects detection of microcracks using micro-computed tomography

Müller, Christine 22 June 2020 (has links)
No description available.
2

Capillary pore-size distribution and equilibrium moisture content of wood determined by means of pressure plate technique

Zauer, Mario, Meissner, Frank, Plagge, Rudolf, Wagenführ, André 23 June 2020 (has links)
This paper deals with the determination of the capillary pore-size distribution (CPSD) and equilibrium moisture content (EMC) of untreated and thermally modified (TM) Norway spruce [Picea abies (L.) Karst.] by means of the pressure plate technique (PPT). Desorption experiments were conducted at very high values of relative humidity (RH) in the range between 99.2% and 100%. The thermal modification of spruce results in an alteration of the CPSD, owing to the formation of intercellular cracks in the middle lamella, as a result of cell-wall compression. The desorption curves for both untreated and TM spruce show an extremely upward bend at 99.97% RH. This step reflects an EMC of 38.1% for untreated spruce and 33.8% for TM spruce. None of the samples shrunk during the PPT measurements. Following desorption experiments at 97.4% RH, all samples shrunk. This step reflects an EMC of 27.9% for untreated spruce and 21.7% for TM spruce.

Page generated in 0.0656 seconds