1 |
Attenuation Field Estimation Using Radio TomographyCooke, Corey 15 September 2011 (has links)
Radio Tomographic imaging (RTI) is an exciting new field that utilizes a sensor network of a large number of relatively simple radio nodes for inverse imaging, utilizing similar mathematical algorithms to those used in medical imaging. Previous work in this field has almost exclusively focused on device-free object location and tracking. In this thesis, the application of RTI to propagation problems will be studied-- specifically using RTI to measure the strength and location of attenuating objects in an area of interest, then using this knowledge of the shadowing present in an area for radio coverage prediction.
In addition to radio coverage prediction, RTI can be used to improve the quality of RSS-based position location estimates. Because the traditional failing of RSS-based multilateration is ranging error due to attenuating objects, RTI has great potential for improving the accuracy of these estimates if shadowing objects are accounted for.
In this thesis, these two problems will primarily be studied. A comparison with other inverse imaging, remote sensing, and propagation modeling techniques of interest will be given, as well as a description of the mathematical theory used for tomographic image reconstruction. Proof-of-concept of the efficacy of applying RTI to position location will be given by computer simulation, and then physical experiments with an RTI network consisting of 28 Zigbee radio sensors will be used to verify the validity of these assertions. It will be shown in this thesis that RTI does provide noticeable improvement in RSS-based position location accuracy in cluttered environments, and it produces much more accurate RSS estimates than a standard exponential path-loss model is able to provide. / Master of Science
|
2 |
An Active Contour Approach for 3D Thigh Muscle SegmentationJudkovich, Michael 21 June 2021 (has links)
No description available.
|
3 |
Exploration, Mapping and Scalar Field Estimation using a Swarm of Resource-Constrained RobotsJanuary 2018 (has links)
abstract: Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which a spatially-dependent indicator function marks the presence or absence of the obstacle in the domain. The indicator function is estimated by solving an optimization problem with PDEs as constraints. Second, a methodology for constructing a topological map of an unknown environment was proposed, which indicates collision-free paths for navigation, from data collected by a swarm of finite-sized robots. As an initial step, the number of topological features in the domain was quantified by applying tools from algebraic topology, to a probability function over the explored region that indicates the presence of obstacles. A topological map of the domain is then generated using a graph-based wave propagation algorithm. This approach is further extended, enabling the technique to construct a metric map of an unknown domain with obstacles using uncertain position data collected by a swarm of resource-constrained robots, filtered using intensity measurements of an external signal. Next, a distributed method was developed to construct the occupancy grid map of an unknown environment using a swarm of inexpensive robots or mobile sensors with limited communication. In addition to this, an exploration strategy which combines information theoretic ideas with Levy walks was also proposed. Finally, the problem of reconstructing a two-dimensional scalar field using observations from a subset of a sensor network in which each node communicates its local measurements to its neighboring nodes was addressed. This problem reduces to estimating the initial condition of a large interconnected system with first-order linear dynamics, which can be solved as an optimization problem. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2018
|
4 |
Fingerprint Growth Prediction, Image Preprocessing and Multi-level Judgment Aggregation / Fingerabdruckswachstumvorhersage, Bildvorverarbeitung und Multi-level Judgment AggregationGottschlich, Carsten 26 April 2010 (has links)
No description available.
|
Page generated in 0.0827 seconds