• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

E-Cadherin mediates UVR- and calcium-induced melanin transfer in human skin cells

Singh, Suman K., Baker, Richard, Sikkink, Stephen, Nizard, C., Schnebert, S., Kurfurst, R., Tobin, Desmond J. 21 June 2017 (has links)
yes / Skin pigmentation is directed by epidermal-melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously we reported that MC:KC contact is required for melanosome transfer, that this can be enhanced by filopodial and by UVR/UVA irradiation, which can up-regulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+-dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+, while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear, and here we evaluated the role of E-Cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-Cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR/UVA in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X, and E-Cadherin expression in these skin cells. Together these data suggest that filopodial proteins and E-Cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.

Page generated in 0.0558 seconds